UNDERGRADUATE SIXTH SEMESTER (PROGRAMME) EXAMINATIONS, 2022
Subject: Mathematics
Course ID: 62118
Course Code: SP/MTH/601/DSE-1B
Course Title: Probability and Statistics
Time: $\mathbf{2}$ hours
Full Marks: 40

The figures in the margin indicate full marks
 Notations and symbols have their usual meaning

1. Answer any five of the following questions:
(2 $\times 5=10$)
a) If A and B are two independent events, then prove that \bar{A} and \bar{B} are also independent.
b) Define probability density function of a random variable X.
c) Find the value of the constant K such that

$$
f(x)=\left\{\begin{array}{lr}
K x(1-x), & 0 \leq x \leq 1 \\
0, & \text { elsewhere }
\end{array}\right.
$$

is a possible probability density function.
d) Prove that $\operatorname{Var}(X)=E\{X(X-1)\}-E(X)\{E(X)-1\}$.
e) From a normal population with standard deviation 3, nine observations are drawn: 25, 20, $18,27,23,32,19,21,22$. Obtain the 95% confidence interval for the population mean.
[For a standard normal variate $z, P(-1.96 \leq z \leq 1.96)=0.95$].
f) Find the moment generating function (m.g.f.) of Poisson distribution.
g) What do you mean by Markov Chain?
h) State Weak Law of Large Numbers (WLLN).
2. Answer any four of the following questions:
a) (i) State the axiomatic definition of probability.
(ii) If the probability density function $f(x)$ of a random variable X is defined by

$$
f(x)=\frac{1}{2} e^{-|x|}, \quad-\infty<x<\infty,
$$

Calculate mean and variance.
b) (i) Prove that $|E\{g(X)\}| \leq E\{|g(X)|\}$, for continuous random variable X.
(ii) A coin is tossed repeatedly until a head is obtained. If the tosses are independent and probability of head is p for each toss, find the expected number of tosses.
c) The joint density function of the random variable X and Y is given by

$$
f(x, y)=2,0<x<1,0<y<x
$$

Find the marginal and conditional density functions. Compute $P\left(\left.\frac{1}{4}<X<\frac{3}{4} \right\rvert\, Y=\frac{1}{2}\right)$.
d) (i) Define Mathematical expectation for Bi-variate distribution.
(ii) Find the correlation coefficient of $(2 X-3)$ and $(X+2)$.
e) Find the mean and variance of the Binomial distribution.
f) Show that the function $f(x, y)$ defined by

$$
f(x, y)=\left\{\begin{array}{cc}
\sin x \sin y, & 0<x<\frac{\pi}{2}, 0<x<\frac{\pi}{2} \\
0, & \text { elsewhere }
\end{array}\right.
$$

is a possible two dimensional probability density function. Find the marginal density function and prove that the random variables are independent.

3. Answer any one of the following questions:

$(10 \times 1=10)$
a) (i)Find the maximum likelihood estimator of the parameter of a Poisson distribution.
(ii)Use Chebyshev's inequality to show that $P\left\{\left|X-\frac{1}{2}\right| \leq \frac{2}{\sqrt{12}}\right\} \geq \frac{3}{4}$ for a random variable having probability density function $f(x)=\left\{\begin{array}{lc}1, & 0<x<1 \\ 0, & \text { elsewhere } .\end{array}\right.$
b) (i)If X is a normal $N(0, \sigma)$ variate, then find the variance of $\left(X+X^{2}\right)$.
(ii) The regression equation of two random variables X and Y are
$2 x+3 y=5,5 x+2 y=8$.Find the correlation coefficient.
(iii) Prove that $\mu_{3}=\alpha_{3}-3 m \alpha_{2}+2 m^{3}$.

