BCA 6TH Semester (Honours) Examination, 2021 BACHELOR OF COMPUTER APPLICATION Course Code: BCA-601 Course Title: Theory of Computation

Full Marks: 80

Course ID:

Time: 4 Hr

The figure in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Group: A

- 1. Answer all the questions:
- i. A shift register is a :
 - a. Mealy m/c
 - b. Moore m/c
 - c. Turing m/c
 - d. All of the above
 - e. None of the above.
- ii. DFA has:
 - a. Single final sate
 - b. More than one initial states
 - c. Unique path to the final state
 - d. All of the above.
 - e. None of the above
- iii. A regular language over an alphabet Σ is one that can't be obtained from the basic language using the operation____
 - a. Union
 - b. Concatenation
 - c. Kleene*
 - d. All of the above
 - e. None of the above
- iv. Which one is true of the following?
 - a. Merger graph is a directed graph
 - b. Compatible graph is a directed graph
 - c. Both are directed graph
 - d. Merger graph has Unique path to the final state
 - e. None of the above
- v. A grammar with more than one parse tree is called_____
 - a. Unambiguous
 - b. Ambiguous
 - c. Regular
 - d. NPDA
 - e. None of the above

1X10=10

- vi. In FSM diagram what does circle represent?
 - a. Change of states
 - b. States
 - c. O/P value
 - d. Initial State
 - e. None of the above

If L_1 and L_2 are context free language, which of the following is true?

a. L_1^*

vii.

- $b. \quad L_2UL_1$
- $c. \quad L_1.L_2$
- d. All of the above
- e. None of the above
- viii. Regular Expression x/y denotes the set _____
 - a. {x, y}
 - b. {x y}
 - c. {x}
 - d. {y}
 - e. None of the above

ix. Which of the following strings is not generated by the following grammar? $S \rightarrow SaSbS | \epsilon$

- a. aabb
- b. abab
- c. aababb
- d. aaabbb
- e. None of the above

x. Number of states requires to accept strings with length of 3_____

- a. 3
- b. 4
- c. 5
- d. Can't be represented
- e. None of the above.

<u>Group: B</u>

2. Answer any Ten questions:

- i. Define DFA.
- ii. What do you mean by unit production?
- iii. What is language?
- iv. Regular languages are all context free-Justify.
- v. What do you mean by acceptability of a string? Explain.
- vi. What are the operations for regular expression?
- vii. What is Mealy machine?
- viii. What do you mean by right linear grammar?
- ix. What do you mean by Σ^* ?
- x. Define complement of a language.
- xi. Define error state in the context of FA.
- xii. Define synchronous sequential circuit.
- xiii. What is Grammar?

2X10=20

- xiv. Define NPDA.
- xv. $L= \{a,aa,aaa,aab,....\}$ over $\sum \{a, b\}$. Is it possible to design a DFA for L? Explain.

Group: C

3. Answer any Four questions:

i. State Pumping lemma for regular language.

- ii. Show that the Union of two context free language is context free.
- iii. Design a PDA for the language $L = \{ww^{R}: w \in \{0,1\}^{*}\}$.
- iv. Prove that L= $\{a^{P}: P \text{ is prime}\}$ over $\sum \{a\}$ is not regular.
- v. What is the basic difference between Mealy and Moore machine? Construct a Mealy machine which is equivalent to the Moore machine given below: 2+3

PS	X=0	X=1	Ζ
\mathbf{q}_0	q1	q2	1
q ₁	q ₃	q ₂	0
q ₂	q2	q1	1
q ₃	q0	q ₃	1

- vi. Let G be the grammar $S \rightarrow aB|ba, A \rightarrow a|aS|bAA, B \rightarrow b|bS|aBB$, for the string aaabbabbba find.
 - a. Left most derivation
 - b. Right most derivation
 - c. Parse tree

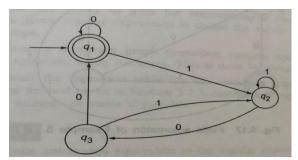
Group: D

4. Answer any Three questions:

10X3=30

i. Draw the merger graph, merger table, compatibility graph and then minimize the following machine: 4+4+2

PS	I ₀	I_1	l ₂	I ₃
А	-	C,1	E,1	B,1
В	E,0	_	_	_
С	F,0	F,1	_	B,1
D	1	_	B,1	_
Е	_	F,0	A,0	D,_
F	С,		В,О	C,1


ii.

a. State the difference between DFA & NFA.b. Design a DFA which accepts set of all binary string contains

b. Design a DFA which accepts set of all binary string contains 1100 or 1010 as substrings.

c. Construct a regular expression corresponding to the state diagram describe by following figure: 2+3+5

5X4=20

iii. a. Construct PDA accepting the set of all string over {a,b} with equal number of a's & b's.

b. Using Pumping Lemma prove that the set L= $\{0^i 1^i | i>1\}$ is not regular. 6+4

a. Construct the minimum state automata equivalent to given automata defined below: (*q_2 indicate that q_2 is the final state)

PS	а	b
$\rightarrow q_0$	q₅	q ₁
	q ₂	q ₆
q ₁ *q ₂	q ₂	q_0
q 4	q₅	q 7
q₅	q_6	q ₂
q_6	q ₄	q 6
q ₇	q ₂	q ₆

b. Convert the following NFA to DFA:

v.

iv.

a. What do you mean by a sub tree of a derivation tree? b. Write the CFG for the language L ={ $0^{i}1^{j}2^{k}$ | i=j or j=k} 2+5+3 c. E \rightarrow E+E |E*E| a. Prove that the CFG with this production rule is ambiguous.

vi. a. A long sequence of input pluses enters a two input, two output synchronous sequential circuit, which is required a produced an output Z=1, whenever a sequence 010101 occurs, overlapping sequence are accepted. Draw the state transition diagram.

b. Define inverse machine.

8+2

6+4