BCA $6{ }^{\text {TH }}$ Semester (Honours) Examination, 2021
 BACHELOR OF COMPUTER APPLICATION
 Course ID:
 Course Code: BCA-601
 Course Title: Theory of Computation
 Full Marks: 80
 Time: 4 Hr
 The figure in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Group: A

1. Answer all the questions:
i. A shift register is a :
a. Mealy m / c
b. Moore m / c
c. Turing m / c
d. All of the above
e. None of the above.
ii. DFA has:
a. Single final sate
b. More than one initial states
c. Unique path to the final state
d. All of the above.
e. None of the above
iii. A regular language over an alphabet Σ is one that can't be obtained from the basic language using the operation \qquad
a. Union
b. Concatenation
c. Kleene*
d. All of the above
e. None of the above
iv. Which one is true of the following?
a. Merger graph is a directed graph
b. Compatible graph is a directed graph
c. Both are directed graph
d. Merger graph has Unique path to the final state
e. None of the above
v. A grammar with more than one parse tree is called \qquad
a. Unambiguous
b. Ambiguous
c. Regular
d. NPDA
e. None of the above
vi. In FSM diagram what does circle represent?
a. Change of states
b. States
c. O / P value
d. Initial State
e. None of the above
vii. If L_{1} and L_{2} are context free language, which of the following is true?
a. L_{1} *
b. $\mathrm{L}_{2} \mathrm{UL}_{1}$
c. $\mathrm{L}_{1} . \mathrm{L}_{2}$
d. All of the above
e. None of the above
viii. Regular Expression x / y denotes the set \qquad
a. $\{x, y\}$
b. $\{x y\}$
c. $\{x\}$
d. $\{y\}$
e. None of the above
ix. Which of the following strings is not generated by the following grammar? $\mathrm{S} \rightarrow \mathrm{SaSbS} \mid \varepsilon$
a. aabb
b. abab
c. aababb
d. aaabbb
e. None of the above
x. Number of states requires to accept strings with length of 3 \qquad
a. 3
b. 4
c. 5
d. Can't be represented
e. None of the above.

Group: B

2. Answer any Ten questions:
i. Define DFA.
ii. What do you mean by unit production?
iii. What is language?
iv. Regular languages are all context free- Justify.
v. What do you mean by acceptability of a string? Explain.
vi. What are the operations for regular expression?
vii. What is Mealy machine?
viii. What do you mean by right linear grammar?
ix. What do you mean by \sum^{*} ?
x. Define complement of a language.
xi. Define error state in the context of FA.
xii. Define synchronous sequential circuit.
xiii. What is Grammar?
xiv. Define NPDA.
$x v . \quad L=\{a, a a, a a a, a a b, \ldots .$.$\} over \sum\{a, b\}$. Is it possible to design a DFA for L ? Explain.

Group: C

3. Answer any Four questions:
i. State Pumping lemma for regular language.
ii. Show that the Union of two context free language is context free.
iii. Design a PDA for the language $L=\left\{w w^{R}: w \in\{0,1\}^{*}\right\}$.
iv. Prove that $L=\left\{a^{P}: P\right.$ is prime $\}$ over $\sum\{a\}$ is not regular.
v. What is the basic difference between Mealy and Moore machine? Construct a Mealy machine which is equivalent to the Moore machine given below:

PS	$\mathrm{X}=0$	$\mathrm{X}=1$	Z
q_{0}	q 1	q 2	1
q_{1}	q_{3}	q_{2}	0
q_{2}	q 2	q_{1}	1
q_{3}	q 0	q_{3}	1

vi. Let G be the grammar $S \rightarrow a B|b a, A \rightarrow a| a S|b A A, B \rightarrow b| b S \mid a B B$, for the string aaabbabbba find.
a. Left most derivation
b. Right most derivation
c. Parse tree

Group: D

4. Answer any Three questions:

10X3=30
i. Draw the merger graph, merger table, compatibility graph and then minimize the following machine:

PS	I_{0}	I_{1}	I_{2}	I_{3}
A	-	$\mathrm{C}, 1$	$\mathrm{E}, 1$	$\mathrm{~B}, 1$
B	$\mathrm{E}, 0$	-	-	-
C	$\mathrm{F}, 0$	$\mathrm{~F}, 1$	-	$\mathrm{B}, 1$
D	-	-	$\mathrm{B}, 1$	-
E	-	$\mathrm{F}, 0$	$\mathrm{~A}, 0$	$\mathrm{D},-$
F	C_{-}	-	$\mathrm{B}, 0$	$\mathrm{C}, 1$

ii. a. State the difference between DFA \& NFA.
b. Design a DFA which accepts set of all binary string contains 1100 or 1010 as substrings.
c. Construct a regular expression corresponding to the state diagram describe by following figure:
$2+3+5$

iii. a. Construct PDA accepting the set of all string over $\{a, b\}$ with equal number of a's \& b's.
b. Using Pumping Lemma prove that the set $L=\left\{0^{i} 1^{i} \mid i>1\right\}$ is not regular.
iv. a. Construct the minimum state automata equivalent to given automata defined below: (${ }^{*} q_{2}$ indicate that q_{2} is the final state)

$P S$	a	b
$\rightarrow q_{0}$	q_{5}	q_{1}
q_{1}	q_{2}	q_{6}
${ }^{*} q_{2}$	q_{2}	q_{0}
q_{4}	q_{5}	q_{7}
q_{5}	q_{6}	q_{2}
q_{6}	q_{4}	q_{6}
q_{7}	q_{2}	q_{6}

b. Convert the following NFA to DFA:

v. a. What do you mean by a sub tree of a derivation tree?
b. Write the CFG for the language $L=\left\{0^{i} 1^{j} 2^{k} \mid i=j\right.$ or $\left.j=k\right\}$
$2+5+3$
c. $\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E}\left|\mathrm{E}^{*} \mathrm{E}\right|$ a. Prove that the CFG with this production rule is ambiguous.
vi. a. A long sequence of input pluses enters a two input, two output synchronous sequential circuit, which is required a produced an output $Z=1$, whenever a sequence 010101 occurs, overlapping sequence are accepted. Draw the state transition diagram.
b. Define inverse machine.

