Subject: Mathematics

Full Marks: 40

Course Code: SP/MTH/501/DSE-1A

Time: 2 Hours

Course ID: 52118

The figures in the margin indicate full marks Notations and symbols have their usual meaning

- ·
- 1. Answer any five questions:
 - (a) If two roots of a polynomial equation with rational coefficients of degree four are 2 + 3i, 2 $\sqrt{3}$, then find the equation.
 - (b) Apply Descartes' rule of signs to find the nature of roots of the equation $x^4 + 7x^2 + 5x 4 = 0$.
 - (c) Find the quotient and remainder when $x^5 4x^4 + 3x^3 40x^2 20x + 41$ is divided by x - 5.
 - (d) If α , β , γ are the roots of the equation $x^3 + px^2 + qx + r = 0$, find $\Sigma \alpha 2$.
 - (e) If α is a double root of the equation $ax^3 + 3bx^2 + 3cx + d = 0$, find the value of α .
 - (f) Find the condition such that the roots of the equation $x^3 px^2 + qx r = 0$ are in geometric progression.
 - (g) Determine the multiple roots of $x^5 + 2x^4 + 2x^3 + 4x^2 + x + 2 = 0$.
 - (h) Find the special roots of $x^{12} 1 = 0$.
- 2. Answer any four questions:
 - (a) Solve the equation $2x^3 + x^2 5x + 2 = 0$, if two of its roots α and β are connected by the relation $\alpha\beta + 1 = 0$.
 - (b) If α , β , γ are the roots of the equation $x^3 + px^2 + qx + r = 0$, find the value of $\Sigma \alpha^3 \beta^3$.
 - (c) If α, β, γ are the roots of $ax^3 + bx^2cx + d = 0, d \neq 0$, find the equation whose roots are $\alpha + \frac{1}{\alpha}, \beta + \frac{1}{\beta}, \gamma + \frac{1}{\gamma}$.
 - (d) Solve the reciprocal equation $x^5 5x^4 + 9x^3 9x^2 + 5x 1 = 0$.
 - (e) Show that the roots of the equation $\frac{1}{x-1} + \frac{2}{x-2} + \frac{3}{x-3} = x$ are all real.
 - (f) (i) State the fundamental theorem of classical algebra.
 - (ii) Find the condition for the equation $X^3 + 3HX + G = 0$ to have three distinct real roots.
- 3. Answer any one question:
 - (a) (i) Solve the equation $3x^3 22x^2 + 48x 32 = 0$, the roots of which are in harmonic progression. 5

5x4=20

Course Title: Theory of Equations

2 x 5=10

10x1=10

- (ii) Find the value of k for which the equation $x^4 + 4x^3 2x^2 12x + k = 0$ has four real and unequal roots. 5
- (b) (i) If α is a root of the cubic $x^3 3x + 1 = 0$, then show that the other roots are $\alpha^2 2$ and $2 - \alpha - \alpha^2$.

(ii) Solve by Ferrari's method: $x^4 - 9x^3 + 28x^2 - 38x + 24 = 0.$ 5