B.SC. FIFTH SEMESTER (HONS.) EXAMINATION 2021

Subject: Mathematics Course ID: 52117

Course Title: Boolean Algebra and Automata Course Code: SH/MTH/504/DSE- 2

Full Marks: 40 Time: 2 hours

The figures in the margin indicate full marks

Notations and symbols have their usual meaning.

1. Answer any five of the following questions:

 $(2\times 5=10)$

- a) Define down-sets and up-sets.
- **b)** State the Knaster–Tarski Fixed point Theorem for a complete lattice.
- c) Design context-free grammars for the following language: The set of all strings with twice as many 0's as 1's.
- d) Write the formal definition of Pushdown Automata.
- e) Show that if P is a Pushdown Automata, then there is a one-state Pushdown Automata P' such that N(P') = N(P).
- f) Define the language of a Turing Machine.
- g) How do you define a Recursive Language?
- h) Give an example of a Turing Machine that accepts the Empty Language.

2. Answer *any four* of the following questions:

 $(5\times 4=20)$

- a) Let P and Q be chains. Prove that $P \times Q$ is a chain in the lexicographic order. Prove that $P \times Q$ is a chain in the coordinate-wise order if and only if at most one of P and Q has more than oneelement.
- **b)** Prove that, for all ordered sets P, Q and R, $P \rightarrow Q \rightarrow R > \cong P \times Q \rightarrow R > \ldots$
- **c)** Let *L* be a lattice. Prove that the following are equivalent:
 - (i) *L* is a chain;
 - (ii) every non-empty subset of L is a sublattice;
 - (iii) every two-element subset of L is a sublattice.
- **d)** A subset A of N is called co-finite if N A is finite.
 - (i) Show that the collection of all co-finite subsets of Nforms a lattice.
 - (ii) Show that the collection of all subsets of N which are eitherfinite or co-finite forms a lattice.
- e) Show that every regular language is a context-free language.

- **f)** Show that, given a TM that computes f, you can construct a TM that accepts the graph of f as a language.
- g) Show that the set of Turing-machine codes for TM's that accept all inputs that are palindromes (possibly along with some other inputs) is undecidable.

3. Answer any one of the following questions:

 $(10 \times 1 = 10)$

- a) Let $A = (a_{ij})$ be an $m \times n$ matrix whose entries are elements of alattice L.
 - (i) Prove the Mini-Max Theorem, viz. $\bigvee_{j=1}^{n} (\bigwedge_{i=1}^{m} a_{ij}) \leq \bigwedge_{k=1}^{m} (\bigvee_{l=1}^{n} a_{kl})$, that is, (the join of the meets of the columns of A) \leq (themeet of the joins of the rows of A).
 - (ii) By applying (i) to a suitable 2×2 matrix, derive the distributive inequality $a \wedge (b \vee c) \geq (a \wedge b) \vee (a \wedge c)$.
 - (iii) By applying (i) to a suitable 3×3 matrix, derive the median in equality $(a \land b) \lor (b \land c) \lor (c \land a) \le (a \lor b) \land (b \lor c) \land (c \lor a)$.
- b) (i) Draw switching circuits for these Boolean expressions:
 - (A) $(a \lor b) \land (b \lor c) \land (c \lor a)$.
 - (B) $[a \land ((b \land \sim c) \lor (\sim b \land c))] \lor (\sim a \land b \land c)$
 - (ii) Establish a truth table for the Boolean function $f(x_1, x_2, x_3) = (\sim x_1 \lor x_2) \land (\sim x_3 \lor x_2)$. Draw a circuit using as few AND, OR, NOT gates as possible to model the function. 4+6
