B.SC. FIFTH SEMESTER (HONOURS) EXAMINATIONS, 2021

Subject: Mathematics
Course ID: 52117
Course Code: SH/MTH/504/DSE-2

Course Title: Probability and Statistics

Full Marks: 40
Time: 2 Hours

The figures in the margin indicate full marks

Notations and symbols have their usual meaning

1. Answer any five of the following questions:
(a) Let the cumulative distribution function of a random variable is given by

$$
F(x)=\left\{\begin{array}{c}
1-\frac{1}{4} e^{-x}, \quad x \geq 0 \\
0, \quad \text { otherwise } .
\end{array}\right.
$$

(b) Show that the jump of the distribution function at a point is the probability at that point.
(c) Give an example to show that two events can be independent but not mutually exclusive.
(d) Prove that probability distribution function is a monotonically non-decreasing function.
(e) Find the value of the constant k such that the function $f(x, y)$ is a possible joint probability density function of the random variables $X \& Y$ where

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{k(2-x-y)}{3}, & \text { for } x>0, y>0, x+y<2 . \\
0, & \text { elsewhere }
\end{array}\right.
$$

(f) Prove that $\operatorname{Var}(X)=E\left(X^{2}\right)-\{E(X)\}^{2}$.
(g) Show that the second order moment about any point is minimum when taken about the mean.
(h) If X is a $\gamma(n)$ variate, then show that $P(0<X<2 n) \geq \frac{n-1}{n}$.
2. Answer any four of the following questions:
(a) (i) Let X be a continuous random variable with distribution function $F(x)$ and probability density function $f(x)$. Show that $F(x)=\int_{-\infty}^{x} f(x) d x$.
(ii) Let X be a random variable with $\operatorname{pdf} f(x)=\left\{\begin{array}{cc}7 e^{-7 x}, \quad x>0 \\ 0, & \text { otherwise }\end{array}\right.$.

Find pdf of $Y=X^{1 / 3}$.
(b) (i) Find the median of X with pdf f, given by $f(x)=\left\{\begin{array}{l}1,0 \leq x \leq 1 \\ 0, \text { otherwise }\end{array}\right.$.
(ii) Show that for continuous symmetrical distribution with unique median, the median and mean are equal.
(c) For the probability density function

$$
f(x, y)=3 x^{2}-8 x y+6 y^{2}, 0<x<1,0<y<1
$$

Find the regression curves for the meanand also the least square regression lines.
(d) A random variable X has probability density function $12 x^{2}(1-x)(0<x<1)$. Compute $P(|X-m| \geq 2 \sigma)$, and compare it with the limit given by Tchebycheff's Inequality.
(e) Obtain the maximum likelihood estimator of the parameter of a Poisson distribution.
(f) For the two state Markov chain with transition matrix $\left(\begin{array}{ll}p & 1-p \\ q & 1-q\end{array}\right)$ and initial probability distribution $\left(\pi_{1}, \pi_{2}\right)$, calculate the probability distribution at the $n^{\text {th }}$ trial and show that as $n \rightarrow \infty$, this distribution is independent of the initial distribution.

3. Answer any one of the following questions:

a) i) Find confidence interval for m of normal (m, σ) population when σ is known.
ii) Obtain Bernoulli's theorem as a particular case of the law of large numbers.
b) (i) The mean and variance of a sample of size 400 from a normal population are found to be 18.35 and 3.25 respectively. Given $P(U>1.96)=0.025, U$ being a standard normal variate. Find 95% confidence interval for the population mean.
(ii) If X and Y be two standardized random variables and $\rho(a X+b Y, b X+a Y)=\frac{1+2 a}{a^{2}+b^{2}}$, then find the correlation coefficient $\rho(X, Y)$ between X and Y. 5+5

