B.SC. FIFTH SEMESTER (HONOURS) EXAMINATIONS, 2021

Subject: Mathematics Course ID: 52116

Course Code: SH/MTH/503/DSE-1 Course Title: Point Set Topology

Full Marks: 40 Time: 2 Hours

The figures in the margin indicate full marks

Notations and symbols have their usual meaning

1. Answer *any five* of the following questions:

 $(2 \times 5 = 10)$

- a) Prove that $\mathcal{T} = \{X, \emptyset, \{a, c\}, \{a, b, c\}\}$ is a topology for $X = \{a, b, c, d\}$ and find all \mathcal{T} -closed subsets of X.
- b) Let $X = \{a, b, c\}$, $\mathcal{T} = \{X, \emptyset, \{a\}, \{a, b\}, \{a, c\}\}$. Find the limit points of the set $A = \{b, c\}$.
- c) Let $X = \{a, b, c, d\}$ and $\mathcal{T} = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c, d\}\}$. Let $f: X \to X$ be defined by f(a) = b, f(b) = d, f(c) = b, f(d) = c. Discuss the continuity of f at 'c' and 'd'.
- d) If $a \in \mathbb{R}$, show that singleton set $\{a\}$ is closed in the usual topology on \mathbb{R} .
- e) If A and B are connected subsets of a space X such that $A \cap B \neq \emptyset$. Prove that $A \cup B$ is connected.
- f) Show that D is a dense subset of X iff $Int(X-D) = \emptyset$.
- g) Give an example to show that a compact subset of a topological space need not be closed.
- h) If $\tau_1 = \{X, \emptyset, \{a\}, \{b, c\}\}$ is a topology on $X = \{a, b, c\}$ and $\tau_2 = \{Y, \emptyset, \{r\}, \{p, q\}\}$ is a topology on Y, test the continuity of the mapping $f: X \to Y$ given by f(a) = p, f(b) = r, f(c) = q.
- 2. Answer *any four* of the following questions:

 $(5 \times 4 = 20)$

- a) Prove that the continuous image of a compact space is compact.
- b) (i) Show that if (X, \mathcal{T}_1) is disconnected and \mathcal{T}_2 is finer than \mathcal{T}_1 , then (X, \mathcal{T}_2) is disconnected.
 - (ii) Prove by a counter example that connectedness is not a hereditary property.

3+2

- c) (i) Prove that every separable metric space is second countable.
- (ii) In a topological space (X, τ) , prove that a subset A of X is open if and only if Int(A) = A.
 - d) (i) Show that every closed subset of a compact space is compact.
 - (ii) Give an example to show that $Int(AUB) \neq Int(A) \cup Int(B)$.

3+2

- e) Show that a homeomorphic image of a second countable space is second countable.
- f) If (X, τ_1) and (Y, τ_2) are two topological spaces then show that the product space $(X \times Y, \tau)$ is connected if and only if X and Y are connected.
- g) (ii) Show that in any topological space, every derived set is closed. (3+2)
- **3.** Answer *any one* of the following questions:

 $(10 \times 1 = 10)$

- a) (i) State and prove Baire Category theorem.
 - (ii) Let (X, d) be a metric space and $A \subset X$. If A is connected, open and closed, then show that A is a component of X.
 - (iii) If α and β are ordinal numbers and β > 0 then show that $\alpha + \beta > \alpha$. (4+3+3)
- b) (i) Let (X, τ) and (Y, τ') be two topological spaces and f be a bijective mapping from X to Y. Then show that f is continuous and closed if and only if f is homeomorphism.
 - (ii) Prove that a subset of $\mathbb R$ is connected if it is an interval.
 - (iii) Let X,Y be two topological spaces and let $f: X \to Y$ be continuous. If A is a connected subset in X then prove that f(A) is connected in Y. (4+3+3)
