Subject: Mathematics

Course Code: SH/MTH/503/DSE-1

Course ID: 52116

Time: 2 Hours

2 x 5=10

5x4=20

Course Title: Theory of Equations

Full Marks: 40

The figures in the margin indicate full marks

Notations and symbols have their usual meaning

- 1. Answer any five questions:
 - (a) Express the polynomial $x^3 + 2x^2 + 3$ in terms of x + 1.
 - (b) For what values of $n, x^n + 1$ is divisible by x + 1.
 - (c) Show that the special roots of the equation $x^{16} 1 = 0$ are $\cos \frac{r\pi}{8} \pm i \sin \frac{r\pi}{8}$, r = 1,3,5,7.
 - (d) Show that the equation $x^4 14x^2 + 24x + k = 0$ has four real and unequal roots if -11 < k < -8.
 - (e) Find by synthetic division, the quotient and the remainder if $5x^5 3x^3 + x 1$ is divided by 3x 2.
 - (f) Show that the equation $x^3 + 2x^2 2x 1 = 0$ has a root in the open interval (-3, -1).
 - (g) Find the remainder when the polynomial $8x^3 + 4x + 2$ is divided by 2x 1.
 - (h) Show that the equation $x^5 + 5ax^3 + 5a^2x + b = 0$ will have a pair of equal roots if $b^2 + 4a^5 = 0$.
 - (i) If α , β , γ , δ are the roots of the biquadratic equation $x^4 x^3 + 2x^2 + x + 1 = 0$, then prove that $(\alpha^3 + 1)(\beta^3 + 1)(\gamma^3 + 1)(\delta^3 + 1) = 16$.
- 2. Answer any four questions:
 - (a) If α , β , γ are the roots of the equation $x^3 + qx + r = 0$, form the equation whose roots are $\frac{\alpha}{\beta}$, $\frac{\alpha}{\gamma}$, $\frac{\beta}{\alpha}$, $\frac{\beta}{\gamma}$, $\frac{\gamma}{\alpha}$, $\frac{\gamma}{\beta}$.
 - (b) If α, β, γ are the roots of the equation $x^3 9x + 9 = 0$, then show that $(\alpha \beta)(\beta \gamma)(\gamma \alpha) = \pm 27$.
 - (c) If α , β , γ are the roots of the equation $4x^3 8x^2 19x + 26 = 0$, find the equation whose roots are $\alpha 2$, $\beta 2$, $\gamma 2$. Apply Descartes' rule of signs to both the equations to find the exact number of positive and negative roots. 2+3
 - (d) If $\alpha, \beta, \gamma, \delta$ are the roots of $x^4 + px^3 + qx^2 + rx + s = 0$, prove that $\sum (\alpha \beta)^2 = 3p^2 8q$.
 - (e) If $\alpha_1, \alpha_2, \dots, \dots, \alpha_n$ are the roots of the equation f(x) = 0 where $f(x) = x^n + p_1 x^{n-1} + p_2 x^{n-2} + \dots + p_n$, then prove that $f'(x) = \frac{f(x)}{x \alpha_1} + \frac{f(x)}{x \alpha_2} + \dots + \frac{f(x)}{x \alpha_n}$.

(f) Prove that the equation $x^5 + 1 + (x^3 + 1)(x^2 - x + 1) = 0$ is a reciprocal equation and solve it.

10x1=10

- 3. Answer *any one* question:
 - (a) (i) If $\alpha + \beta + \gamma = 1$, $\alpha^2 + \beta^2 + \gamma^2 = 3$ and $\alpha^3 + \beta^3 + \gamma^3 = 7$, prove that $\alpha^4 + \beta^4 + \gamma^4 = 11$. (ii) If $\alpha, \beta, \gamma, \delta$ are the roots of the equation $x^4 + px^3 + qx^2 + rx + s = 0$, find the value of $\Sigma \alpha^3 \beta \gamma$. (iii) If $x^2 + kx + 1$ is a factor of $px^4 + qx^3 + r$, prove that $(p+r)(p-r)^2 = q^2r$. 3
 - (b) (i) If $\alpha_1, \alpha_2, \dots, \dots, \alpha_n$ are the roots of the equation $x^n + nax + b = 0$, prove that $(\alpha_1 \alpha_2)(\alpha_1 \alpha_3) \dots \dots (\alpha_1 \alpha_n) = n(\alpha_1^{n-1} + a).$ 3
 - (ii) Solve the bi-quadratic equation $x^4 + 3x + 20 = 0$, by Ferrari's method. 5
 - (iii) Transform the equation $x^4 + \frac{1}{2}x^3 \frac{1}{3}x^2 + \frac{1}{4}x + \frac{5}{12} = 0$, so that the fractional co-efficients of the equation may be removed by multiplication of roots. 2
