B.SC. FIFTH SEMESTER (HONOURS) EXAMINATIONS, 2021

Subject: Mathematics

Course Code: SH/MTH/503/DSE-1

Full Marks: 40

Course ID: 52116

Course Title: Theory of Equations

Time: $\mathbf{2}$ Hours

The figures in the margin indicate full marks

Notations and symbols have their usual meaning

1. Answer any five questions:
$2 \times 5=10$
(a) Express the polynomial $x^{3}+2 x^{2}+3$ in terms of $x+1$.
(b) For what values of $n, x^{n}+1$ is divisible by $x+1$.
(c) Show that the special roots of the equation $x^{16}-1=0$ are $\cos \frac{r \pi}{8} \pm i \sin \frac{r \pi}{8}, r=$ 1,3,5,7.
(d) Show that the equation $x^{4}-14 x^{2}+24 x+k=0$ has four real and unequal roots if $-11<k<-8$.
(e) Find by synthetic division, the quotient and the remainder if $5 x^{5}-3 x^{3}+x-1$ is divided by $3 x-2$.
(f) Show that the equation $x^{3}+2 x^{2}-2 x-1=0$ has a root in the open interval $(-3,-1)$.
(g) Find the remainder when the polynomial $8 x^{3}+4 x+2$ is divided by $2 x-1$.
(h) Show that the equation $x^{5}+5 a x^{3}+5 a^{2} x+b=0$ will have a pair of equal roots if $b^{2}+4 a^{5}=0$.
(i) If $\alpha, \beta, \gamma, \delta$ are the roots of the biquadratic equation $x^{4}-x^{3}+2 x^{2}+x+1=0$, then prove that $\left(\alpha^{3}+1\right)\left(\beta^{3}+1\right)\left(\gamma^{3}+1\right)\left(\delta^{3}+1\right)=16$.
2. Answer any four questions:
(a) If α, β, γ are the roots of the equation $x^{3}+q x+r=0$, form the equation whose roots are $\frac{\alpha}{\beta}, \frac{\alpha}{\gamma}, \frac{\beta}{\alpha}, \frac{\beta}{\gamma}, \frac{\gamma}{\alpha}, \frac{\gamma}{\beta}$.
(b) If α, β, γ are the roots of the equation $x^{3}-9 x+9=0$, then show that $(\alpha-\beta)(\beta-$ $\gamma)(\gamma-\alpha)= \pm 27$.
(c) If α, β, γ are the roots of the equation $4 x^{3}-8 x^{2}-19 x+26=0$, find the equation whose roots are $\alpha-2, \beta-2, \gamma-2$. Apply Descartes' rule of signs to both the equations to find the exact number of positive and negative roots.
(d) If $\alpha, \beta, \gamma, \delta$ are the roots of $x^{4}+p x^{3}+q x^{2}+r x+s=0$, prove that $\sum(\alpha-\beta)^{2}=$ $3 p^{2}-8 q$.
(e) If $\alpha_{1}, \alpha_{2}, \ldots \ldots \ldots, \alpha_{n}$ are the roots of the equation $f(x)=0$ where $f(x)=x^{n}+$ $p_{1} x^{n-1}+p_{2} x^{n-2}+\cdots+p_{n}$, then prove that $f^{\prime}(x)=\frac{f(x)}{x-\alpha_{1}}+\frac{f(x)}{x-\alpha_{2}}+\cdots+\frac{f(x)}{x-\alpha_{n}}$.
(f) Prove that the equation $x^{5}+1+\left(x^{3}+1\right)\left(x^{2}-x+1\right)=0$ is a reciprocal equation and solve it.
3. Answer any one question:
$10 \times 1=10$
(a) (i) If $\alpha+\beta+\gamma=1, \alpha^{2}+\beta^{2}+\gamma^{2}=3$ and $\alpha^{3}+\beta^{3}+\gamma^{3}=7$, prove that $\alpha^{4}+\beta^{4}+$ $\gamma^{4}=11$.

3
(ii) If $\alpha, \beta, \gamma, \delta$ are the roots of the equation $x^{4}+p x^{3}+q x^{2}+r x+s=0$, find the value of $\sum \alpha^{3} \beta \gamma$.
(iii) If $x^{2}+k x+1$ is a factor of $p x^{4}+q x^{3}+r$, prove that $(p+r)(p-r)^{2}=q^{2} r$.
(b) (i) If $\alpha_{1}, \alpha_{2}, \ldots \ldots \ldots, \alpha_{n}$ are the roots of the equation $x^{n}+n a x+b=0$, prove that $\left(\alpha_{1}-\alpha_{2}\right)\left(\alpha_{1}-\alpha_{3}\right) \ldots \ldots \ldots \ldots\left(\alpha_{1}-\alpha_{n}\right)=n\left(\alpha_{1}^{n-1}+a\right)$.
(ii) Solve the bi-quadratic equation $x^{4}+3 x+20=0$, by Ferrari's method.
(iii) Transform the equation $x^{4}+\frac{1}{2} x^{3}-\frac{1}{3} x^{2}+\frac{1}{4} x+\frac{5}{12}=0$, so that the fractional co-efficients of the equation may be removed by multiplication of roots.

