B.SC. FIFTH SEMESTER (HONOURS) EXAMINATIONS, 2021

Subject: Mathematics
Course ID: 52116
Course Code: SH/MTH/503/DSE-1
Full Marks: 40

Course Title: Linear Programming

Time: 2 Hours

The figures in the margin indicate full marks

Notations and symbols have their usual meaning

1. Answer any five questions

$$
2 \times 5=10
$$

a) What is the criteria for the existence of unique optimal solution in an LPP in a simplex method?
b) Prove that intersection of two convex sets is also a convex set.
c) Write the dual of Maximize $z=6 x_{1}+4 x_{2}+6 x_{3}+x_{4}$, subject to $4 x_{1}+5 x_{2}+$ $4 x_{3}+8 x_{4}=21,3 x_{1}+7 x_{2}+8 x_{3}+2 x_{4} \leq 48, x_{i} \geq 0, i=1,2,3,4$
d) When does an LPP admit an unbounded solution? Answer in the context of simplex method.
e) $x_{1}=4, x_{2}=0, x_{3}=-2, x_{4}=0, x_{5}=2$ is a solution set of two linearly independent simultaneous equations with 5 variables. Is the solution basic? Give reason.
f) Write down the mathematical model of a transportation problem.
g) Use dominance to reduce the payoff matrices and solve the game

2	3	$\frac{1}{2}$
$\frac{3}{2}$	2	0
$\frac{1}{2}$	1	1

h) Show that whatever may be the value of a, the game with the following payoff matrix is strictly determinable.

		B	
		I	II
	I	3	7
A	II	-3	a

2. Answer any four questions:
(a) Following is the starting tableau of an LPP by the simplex method, in an incomplete form

		c_{j}	3	2	0	0	-M	
C_{B}	B	x_{B}	b	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}
			2	2	1	1	0	0
			12	3	4	0	-1	1

(i) Complete the columns of $\mathrm{C}_{\mathrm{B}}, \mathrm{B}, \mathrm{x}_{\mathrm{B}}$ and the row giving $\left(z_{j}-c_{j}\right)$
(ii) Write down the LPP in its standard form from the tableau.
(iii) Find the departing and the entering vectors and write down the next tableau.
b) Apply simplex method to solve the following LPP

$$
\begin{gathered}
\text { Maximize } z=30 x_{1}+23 x_{2}+29 x_{3} \\
\text { subject to } 6 x_{1}+5 x_{2}+3 x_{3}=26 \\
4 x_{1}+2 x_{2}+5 x_{3} \leq 7, \\
x_{i} \geq 0, i=1,2,3
\end{gathered}
$$

From the final table find the optimal solution of dual problem.
c) Use Charne's Big-M method to solve the L.P.P

$$
\begin{aligned}
& \text { Max } z=3 x_{1}-x_{2} \\
& \text { S. to } 2 x_{1}+x_{2} \geq 2 \\
& x_{1}+3 x_{2} \leq 3 \\
& x_{2} \leq 4 \\
& \quad x_{1}, x_{2} \geq 0 .
\end{aligned}
$$

d) Solve the following assignment problem.

A company is faced with the problem of assigning six different machines to five different jobs. The costs are estimated in the adjacent table (hundred of rupees). Solve the problem assuming that the objective is to minimize the total cost

2.5	5	1	5	1
2	5	1.5	7	3
3	6.5	2	8	3
3.5	7	2	9	4.5
4	7	3	9	6
6	9	5	10	6

e) Find the optimum B.F.S. of thetransportation problem

DESTINATION ${ }^{a_{i}}$

$$
\text { ORIGINS } \begin{aligned}
& \begin{array}{|rrrrr|r}
2 & 11 & 10 & 3 & 7 \\
1 & 4 & 7 & 2 & 1 & 4 \\
3 & 9 & 4 & 8 & 12 & 8 \\
b_{j} & 3 & 3 & 4 & 5 & 6
\end{array}
\end{aligned}
$$

f) Solve graphically or otherwise the games whose payoff matrices are given below

		B	
	A_{1}	B_{2}	
A	A_{1}	1	-3
	A_{2}	3	5
	A_{3}	-1	6
A_{4}	4	1	
A_{5}	2	2	
	A_{6}	-5	0

3. Answer any one question:
a) (i) Solve the LPP by graphical method

$$
\begin{aligned}
& \text { Maxz }=150 x_{1}+100 x_{2} \\
& \text { S.to } 8 x_{1}+5 x_{2} \leq 60 \\
& 4 x_{1}+5 x_{2} \leq 40 \\
& x_{1}, x_{2} \geq 0 .
\end{aligned}
$$

(ii) Prove that in LPP, the dual of the dual is Primal.
(iii) Solve the following LPP by using two-phase simplex method

$$
\begin{aligned}
& \operatorname{Max} z=2 x_{1}-x_{2}+x_{3} \\
& \text { S. to } x_{1}+x_{2}-3 x_{3} \leq 8 \\
& 4 x_{1}-x_{2}+x_{3} \geq 2 \\
& 2 x_{1}+3 x_{2}-x_{3} \geq 4 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

$$
3+2+5
$$

b) i) If the dual problem has no feasible solution and the primal problem has a feasible solution, then prove that the primal objective function is unbounded.
ii) Find the optimal assignments to find the minimum cost for the assignment problems with the following cost matrix

$$
\begin{array}{ccccc}
I & I I & I I I & I V & V
\end{array}
$$

A	6				
B	6	5	8	11	16
C	1	13	16	1	10
D	16	11	8	8	8
9	14	12	10	16	
E	10	13	11	8	16

iii) Show that the LPP

$$
\begin{gathered}
\text { Maximize } z=4 x_{1}+14 x_{2}, \\
\text { subject to } 2 x_{1}+7 x_{2} \leq 21, \\
7 x_{1}+2 x_{2} \leq 21, \\
x_{i} \geq 0, i=1,2
\end{gathered}
$$

admits of an infinite number of solutions.

