B.Sc. 5th Semester (Honours) Examination, 2019

SH-V/Electronics-501C-12(T)/19

ELECTRONICS

Course ID: 51712

Course Code : SH/ELC/502/C-12(T)

Course Title : Electromagnetics

Time 1 Hour 15 Minutes

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

- **1.** Answer *any three* of the following:
 - (a) If $\vec{A} + \vec{B} + \vec{C} = \vec{0}$, the show that $\vec{A} \times \vec{B} = \vec{B} \times \vec{C} = \vec{C} \times \vec{A}$
 - (b) What is is Lenz's law?
 - (c) What is an electric dipole?
 - (d) State the differential from of Gauss law in Electrostatics.
 - (e) If $\vec{A} = \hat{\imath} + \hat{\jmath}$ and $\vec{B} = 2\hat{\imath} 3\hat{\jmath} + \hat{k}$, find $(\vec{A} \times \vec{B})$.
 - (f) What amount of energy is stored by a charged capacitor (C) at a potential (V)?
- 2. Answer *any three* of the following questions:
 - (a) State Gauss's divergence theorem.
 - (b) Define Poynting rector. How is it related with energy flux?
 - (c) What are different modes of radio wave propagation?
 - (d) State Faradays Laws of electromagnetic induction.
 - (e) What is the flux of electric field in intensity $[\vec{E}(\vec{r})]$?
 - (f) What is motional e.m.f.? What type of e.m.f. is it?
- 3. Answer *any two* of the following questions:
 - (a) Starting from Maxwell's equation derive the wave equations for electric (\vec{E}) and magnetic (\vec{B}) fields in free space.
 - (b) How Ampere's circuital law has been modified in Maxwell's equation?
 - (c) (i) What do you mean by characteristic wave impedance (Z_0) of a medium? What is the value of this Z_0 in free space for a TEM (e.m.wave) wave?
 - (ii) Define magnetic scalar potential.

51712/16584

Please Turn Over

Full Marks: 25

2×3=6

 $1 \times 3 = 3$

 $5 \times 2 = 10$

SH-V/Electronics-501C-12(T)/19 (2)

- (d) Show that if two coils having co-efficients of self inductance L_1 and L_2 are mutually coupled, then the co-efficient of mutual inductance can be obtained $= k\sqrt{L_1L_2}$. What is K?
- 4. Answer *any one* of the following question:
 - (a) Show that in a homogeneous isotropic dielectric medium of permittuity ϵ and permeability μ , the velocity of e.m. wave propagation is given by $v = \frac{1}{\sqrt{\mu\epsilon}}$.

6×1=6

- (b) What as magnetic dipole? Derive an expression for the force acting on a magnetic dipole placed in a nonuniform magnetic field.
- (c) In an airfilled wave guide radio wave is propagating in TE mode. Find out the cut off frequency, phase velocity and the characteristic/wave impedance for the particular case. State the necessary formula for the same.