M.Sc. 4th Semester Examination, 2021 PHYSICS (Molecular Spectroscopy-II & Nonlinear Dynamics) Course Code: 401C Course ID: 42451

Time: 2 Hours

experimentally studied?

Full Marks: 40

The figures int he right hand side margin indicate full marks. Candidates are required to give their answers in their own words as fas as practicable.

Unit-I

1.	Answe any three of the followings:2×3=6(a) When do 'fluorescence' and 'phosphorescence' occur? Compare their lifetimes.
	(b) If an unpaired electron gives ESR at 30GHz when the magnetic field is 1.24 tesla, find
	the electron g -factor.
	(c) Draw the schematic diagram of an ESR spectrometer with essential components.
	(d) What do you mean by indistinguishable configuration?
	(e) What is the interaction energy when a nucleus interacts with magnetic field?
2.	Answer <i>any two</i> of the followings: 4×2=8 (a) (i) Why does Photoacoustic spectroscopy (PAS) require pulses of light instead of a
	continuous steady source of light to hit the sample?
	(ii) Which of vibrational and electronic excitations produce more heat? Why?
	2+2=4
	(b) Prove that $i^2 = E$ with the help of an octahedral molecule. What do you mean by
	symmetric elements under the property of group theory. $2+2=4$
	(c) Explain the principle of Nuclear Magnetic Resonance (NMR). Why the micrwave
	sources and detectors are used in ESR? 2+2=4
	(d) Discuss the splitting of energy levels during the interaction of nuclear spin with
	magnetic field.
3.	Answer <i>any one</i> of the followings: $6 \times 1=6$ (a) Find the symmetry elements present in the following molecules (i) H ₂ O, (ii) BF ₃ .
	(b) What do you mean by Mossbauer Spectroscopy? Discuss Quadruple shift (Δ) under Mossbauer Spectroscopy. What is spin-spin relaxation and spin-lattice relaxation mechanisms? How is Nuclear Quadrupole Resonance (NQR) spectrum of a compound

Please Turn Over

(1+2+2+1)=6

Unit-II

4. Answe *any three* of the followings:

- (a) What is Hopf bifurcation?
- (b) Write down Lorentz equation. Prove that it represents a dissipative system.
- (c) The refractive index n of a medium depends on frequency $\underline{\omega}$. Find the expression for the group velocity and the group velocity dispersion parameter.
- (d) Mension the differences between a *center* and a *limit cycle*.
- (e) Find the fixed points of $\dot{x} = x^2 1$, and classify their stability.

5. Answer any two of the followings:

(a) Construct the Liapunov function of the system

$$\dot{x} = -x + 4y,$$

$$\dot{y} = -x - y^3.$$

Prove that the system has no closed orbit.

- (b) State and explain Poincare-Bendixon theorem. How can you ascertain the existence of closed orbit from this theorem?
 3+1=4
- (c) Draw the phase portrait of two-dimensional saddle-node bifurcation and discuss the stability in each cases, i.e., before, at and after the bifurcation.
- (d) Explain the solitary solution of the nondimensionalized Korteweg de Vries (KdV) equation

$$\frac{\partial u}{\partial t} + 6u\frac{\partial u}{\partial x} + \frac{\partial^3 u}{\partial x^3} = 0.$$

The symbols have their usual meanings.

6. Answer any one of the followings:

(a) What do you mean by maps? Consider the logistic map equation

$$x_{n+1} = r x_n (1 - x_n),$$

where r is a real positive parameter. Draw the x_n - x_{n+1} plot. Find all the fixed points and determine their stability. 1+1+4=6

(b) (i) Classify the type of fixed point at the origin and draw the phase portrait for the system

$$\dot{x} = x + y,$$

$$\dot{y} = 4x - 2y.$$

(ii) Explain the supercritical pitchfork bifurcation of the equation $\dot{x} = -x + \beta \tanh(x)$ for the variation of β . 3+3=6

2×3=6

 $4 \times 2 = 8$

2+2=4

6×1=6