POSTGRADUATE FOURTH SEMESTER EXAMINATIONS, 2022

Subject: Mathematics Course ID: 42154

Course Code: Math-404ME

Course Title: Computational Fluid Dynamics

Full Marks: 40 Time: 2 Hours

The figures in the margin indicate full marks

The notations and symbols have usual meanings unless stated otherwise

Answer *any five* of the following questions:

 $(8 \times 5 = 40)$

- 1. a) What are the popular methods of studying fluid flow problems?
 - b) Which one of those methods is advantageous and why?
 - c) What are the differences (mention at least two) between a parabolic and a hyperbolic partial differential equation? Why is it more difficult to obtain computational solution of hyperbolic PDEs?
 - d) What is the meaning of pre-shock oscillation and why does it occur? (1+2+1+2+2)

2.

- a) Discuss in brief the basic differences between the three discretization methods, namely,finite difference, finite volume and finite element methods.
- Apply any one of the above mentioned methods to solve the Laplace equation (in two dimension, 2D) in a unit square with Dirichlet boundary condition (say equal to 1). Write down the scheme for a uniform grid.

3.

- a) Derive the conservative form of the incompressible Navier-Stokes equations in 2D. 2
- b) Define the staggered grid and show the locations of pressure and velocity components on a staggered grid in 2D.
- Using the staggered locations of the dependent variables discretize the unsteady,
 convective, diffusive and pressure gradient terms of the x-momentum equation in
 conservative form of incompressible Navier-Stokes equations in 2D.

- 4.
- a) Use similar discretization process (as in 3(c)) to discretize the continuity and the y momentum equations as well.
- b) Use those discrete equations to generate an explicit algorithm to solve the system of unsteady Navier-Stokes equations.
- 5.
- a) What do you understand when one talks about pseudo-transient formulation? What kind of flows can be computed using this formulation? (1+1)
- **b)** Consider an iterative solution technique for solving 2D steady state Navier-Stokes equations using SIMPLE formulations:
 - (i) Draw the control volumes used in this formulation for the continuity and x-momentum as well as y-momentum equations. 2
 - (ii) Write down the discretized continuity and momentum equations used in SIMPLE-Algorithm. 4

6.

- a) Define a Cauchy problem for scalar conservation law. Give an example of Cauchy problem.
- **b)** Prove that the function $u \in L^\infty_{loc}(R_+ \times R)$ will be a weak solution of $u_t + f(u)_x = 0$, with $u(x,0) = u_0(x)$, if the equation $\int_{-\infty}^{\infty} \int_0^{\infty} (u\varphi_t + f(u)\varphi_x) \, dt dx + \int_{-\infty}^{\infty} u_0(x) \varphi(x,0) dx = 0$ is fulfilled for all test functions $\varphi \in C^1_0(R_+ \times R)$.
- c) Define the Rankine-Hugoniot condition for a discontinuous solution.
- d) Define the entropy solution. (2+3+2+1)
- 7. Consider the scalar conservation law $u_t + f(u)_x = 0$, with $u(x, 0) = u_0(x)$, $x \in R$.
 - **a.** Derive the Naive and the Lax-Friedrichs schemes for this problem.
 - **b.** Discuss in detail whether the schemes are conservative and consistent. (2+3+3)

- **8.** Consider the linear advection equation $u_t + au_x = 0$, (with a being constant).
 - a. Compute the numerical viscosity $K\beta$ of the Naive scheme for this equation and conclude the behavior of the scheme based on $K\beta$.
 - **b.** In case of Lax-Friedrichs scheme, show that $K\beta$ is positive as long as $|a\lambda| < 1$.

(4+4)
