Subject: Mathematics
Course ID: 42152

Course Code: Math-402

Course Title: Graph Theory \& Field Theory (OId)

Full Marks: 40
Time: 2 Hours

The figures in the margin indicate full marks

Notations and symbols have their usual meaning.

Group A - Graph Theory

Answer any three questions from the following five questions.
$8 \times 3=24$

1. a) Prove that a graph is bipartite if and only if it does not contain any odd cycle.
b) Draw a graph whose incidence matrix is given by

$$
\left(\begin{array}{llllll}
0 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

c) Justify whether it is possible or not to draw a graph with 12 vertices having 13 edges

$$
5+2+1
$$

2. a) Show that any simple graph with n vertices has at least two vertices of same degree.
b) Suppose the maximum degree of a tree T is 4 . Let $n_{i}(T)$ denote the number of vertices having degree i. If $n_{1}(T)=20$ and $n_{2}(T)=n_{3}(T)=n_{4}(T)$, find the number of vertices of T.
c) Define diameter and centre of a graph.
$3+3+2$
3. a) Prove thata graph G has a spanning tree if and only if G isconnected.
b) If G is a connected graph with each vertex of even degree then prove that G is Eulerian. $\mathbf{3 + 5}$
4. a) Give an example of a connected planar graph with v vertices, e edges and k components such that $e=3 v-6 k$.
b) Is the graph $K_{3,3}$ planar? Justify your answer.
c) Let G be a simple planar graph. Prove that there exists a vertex v in G such that $\operatorname{deg}(v) \leq 5$.
d) Give an example of a Hamiltonian graph which is not Eulerian. $\mathbf{2 + 2 + 3 + 1}$
5. a) For any simple graph G, prove that $\chi(G) \leq \Delta(G)+1$. Give an example of a simple graph where the equality holds.
b) Let C_{n} be a cycle of length $n, n \geq 2$. Prove that $\chi_{C_{n}}(k)=(k-1)^{n}+(-1)^{n}(k-1)$.

$$
(3+1)+4
$$

Group B - Field Theory

Answer any two questions from the following three questions.
$8 \times 2=16$
6. a) Give an example of two non-isomorphic fields which are isomorphic as vector spaces.
b) Consider the field $K(x)$ and let $u=\frac{x^{3}}{x+1}$. Show that $K(x)$ is a simple extension of $K(u)$. Also find $[K(x): K(u)]$.
c) Construct a field with 9 elements.

$$
2+3+3
$$

7. a) Give an example (with reason) of a field extension which is not a Galois extension.
b) If K is an infinite field, then prove that $K(x)$ is Galois over K.
c) For any finite group G, can you find a Galois extension with the Galois group isomorphic to G ? Justify your answer.
$2+3+3$
8. a) Find the splitting field of the polynomial $\left(x^{3}-5\right)\left(x^{2}-4\right)$ over \mathbb{Q}.
b) Give an example (with reason) of an algebraic field extension which is not separable.
c) For any finite field F, prove that the group $\left(F^{*}, \cdot\right)$ is cyclic.

$$
2+3+3
$$

