M.SC. FOURTH SEMESTER EXAMINATIONS, 2021

Subject: Mathematics Course Code: Math-401C **Course Title: Operations Research** Full Marks: 40

The figures in the margin indicate full marks

Notations and symbols have their usual meaning

Answer any five from the following questions.
$$8 \times 5 = 40$$

- 1. A manufacturer produces two types of products P_1 and P_2 . Each P_1 product requires 4 hours of grinding and 2 hours of polishing, whereas each P_2 product requires 2 hours of grinding and 5 hours of polishing. The manufacture has 2 grinders and 3 polishers. Each grinder works for 40 hours a week, and each polisher works for 60 hours a week. Profit on P_1 product is Rs. 3 and on P_2 product is Rs. 4. Whatever is produced in a week is sold in the market.
 - a) Write down the LPP to maximize the profit of the firm.
 - 4 + 4 = 8b) Find optimal solution of the above LPP using simplex method.
- 2. a) Convert the following LPP (primal) into its dual form

 $Max z = 3x_1 + 4x_2$ Subject to the constraints: $2x_1 + 6x_2 \le 16$ $5x_1 + 2x_2 \ge 20$

 $\& x_1, x_2 \ge 0.$

- b) Solve the dual problem so obtained using dual simplex method. 2 + 6 = 8
- 3. The optimal solution (table) for the following LPP:

Maximize $z = 3x_1 + 2x_2$ Subject to the constraints:

 $x_1 + x_2 \le 4$ $x_1 - x_2 \le 2$ and $x_1, x_2 \ge 0$ is given below

Course ID: 42151

Time: 2 Hours

	C _j		3	2	0	0	$Min\left\{\frac{x_B}{x_i}, x_i > 0\right\}$
BV	C_B	X _B	<i>x</i> ₁	<i>x</i> ₂	<i>s</i> ₁	s ₂	
<i>x</i> ₂	2	1	0	1	$\frac{1}{2}$	$-\frac{1}{2}$	
<i>x</i> ₁	3	3	1	0	$\frac{1}{2}$	$\frac{1}{2}$	
$(\sum$	$C_{B_i}x_i$	$= z_j$	3	2	$\frac{5}{2}$	$\frac{1}{2}$	
$c_j - z_j$		0	0	$-\frac{5}{2}$	$-\frac{1}{2}$		

- a) Using sensitivity analysis, find how much c_1 can be increased such that the optimality of the feasible solution is not disturbed?
- b) Discuss the effect on the optimal solution for the change in the availability of resources from $[4 \ 2]^T$ to $[9 \ 6]^T$. 4+4
- 4. a) Solve the travelling salesman problem with the following data:

$$C_{12} = 15, C_{13} = 20, C_{14} = 10,$$

$$C_{21} = 15, C_{23} = 35, C_{24} = 15,$$

$$C_{31} = 20, C_{32} = 35, C_{34} = 32,$$

$$C_{41} = 10, C_{42} = 15, C_{43} = 32,$$

where C_{ij} is the cost of travelling from city 'i' to 'j'.

b) A manufacturing factory has 5 machines and 5 jobs to be performed. The time that each machine takes to perform each job is given in the following effectiveness matrix:

	J_1	J_2	J_3	J_4	J_5
<i>M</i> ₁	40	35	25	20	15
<i>M</i> ₂	16	26	48	50	24
<i>M</i> ₃	22	12	32	15	17
<i>M</i> ₄	16	18	12	15	36
<i>M</i> ₅	45	20	36	24	18

Find the optimal job assignment and the optimal cost for completing all jobs.

4 + 4 = 8

5. Using Gomory's mixed integer method, solve the following LPP:

 $\max z = x_1 + x_2$

subject to the constraints:

 $2x_1 + 5x_2 \le 16$

 $6x_1 + 5x_2 \le 30$

 $x_2 \ge 0$ and x_1 is a non-negative integer.

6. Four jobs J_1, J_2, J_3 and J_4 are to be processed on each of the 4 machines A, B, C, D in the order ABCD. The processing times (in hours) are given as

Job <i>i</i> Machine	J_1	J ₂	J ₃	J ₄
A	11	13	9	16
В	4	3	5	2
С	6	7	5	8
D	15	8	13	9

- (a) Convert the above *n*-jobs and *m*-machines problem into *n*-jobs and 2-machines problem and find the optimal job sequence.
- (b) Find the total minimum elapsed time. Also find the idle time for each machine.

4 + 4 = 8

7. Consider the following table summarizing the details of a project:

Activity	to	t _m	t_p
1-2	1	1	7
1-3	1	4	7
1-4	2	2	8
2-5	1	1	1
3-5	2	5	14
4-6	2	5	8
5-6	3	6	15

- (a) Find the expected duration and variation of each activity and construct the project network diagram.
- (b) Find the critical path and expected project completion time. Also find the probability of completing the project on or before 20 weeks.
 4+4=8
- 8. (a) What is inventory? Discuss the classification of inventories.

(b) Consider that a textile mill buys its raw material from a vendor. The annual demand of the raw material is 9000 units. The ordering cost is Rs. 100 per order and the carrying cost is 20% of the purchase price per unit per month, where the purchase price per unit is Rs. 1. Find the followings:

(i) Optimal lot size (EOQ).

- (ii) Total cost.
- (iii) No. of orders per year.

(iv) Time difference between consecutive two orders.

(2+2)+4=8
