B.Sc. Semester III (General) Examination, 2018-19
 MATHEMATICS

Course ID : 32118
Course Code : SPMTH-301C-1C(T)

Course Title : Algebra

Time: 2 Hours
Full Marks: 40
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

1. Answer any five questions:
(a) Find the modulus and amplitude of $\frac{3+5 i}{2-3 i}$.
(b) If a, b, c be positive real numbers, prove that $\left(a^{2} b+b^{2} c+c^{2} a\right)\left(a b^{2}+b c^{2}+c a^{2}\right) \geq 9 a^{2} b^{2} c^{2}$.
(c) If α be a multiple root of order 3 of the equation $x^{4}+b x^{2}+c x+d=0(d \neq 0)$ show that $\alpha=-\frac{8 d}{3 c}$.
(d) A relation R is defined on the set \mathbb{Z} by " $a R b$ if and only if $a b>0$ " for $a, b \in \mathbb{Z}$. Examine if R is an equivalence relation.
(e) Find the dimension of the subspace S of \mathbb{R}^{3} where $S=\{(x, y, z): 2 x+y-z=0\}$.
(f) Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=3 x^{2}-5$ and $g(x)=\frac{x}{x^{2}+1}$. Then find $f_{0} g$ and $g_{o f}$.
(g) Find x such that the rank of $A=\left(\begin{array}{ccc}2 & 1 & 4 \\ 1 & x & 2 \\ 4 & 0 & x+2\end{array}\right)$ is 2 .
(h) Verify Cayley-Hamilton theorem for $A=\left(\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right)$.
2. Answer any four questions:
(a) If a, b, c, d be distinct positive real numbers and $S=a+b+c+d$ then prove that $\frac{s}{s-a}+\frac{s}{s-b}+\frac{s}{s-c}+\frac{s}{s-d}>5 \frac{1}{3}$.
(b) For what values of K, the following equations $x+y+z=1,2 x+y+4 z=K, 4 x+y+10 z=K^{2}$, have solutions and completely in each case.
(c) Solve the equation $2 x^{4}-5 x^{3}-15 x^{2}+10 x+8=0$, the roots being in geometric progression.
(d) (i) If a is prime to b, prove that $a+b$ is prime to $a b$.
(ii) Prove that the product of any three consecutive integers is divisible by 6 . $2+3=5$
(e) (i) Show that \mathbb{N} and \mathbb{Z} have the same cardinality.
(ii) Let A, B be both finite sets of n elements and a mapping $f: A \rightarrow B$ is injective. Prove that f is a bijection.
(f) Find the eigenvalues and the corresponding eigen vectors of the matrix

$$
\left(\begin{array}{rrr}
6 & -2 & 2 \\
-2 & 3 & -1 \\
2 & -1 & 3
\end{array}\right) .
$$

3. Answer any one question:

$$
10 \times 1=10
$$

(a) (i) Solve: $x^{3}-12 x+65=0$
(ii) Use the theory of Congruences to show that $7 \mid\left(2^{5 n+3}+5^{2 n+3}\right)$ for all positive integer n.
(iii) Apply Descartes' rule of signs to find the nature of the roots of the equation $2 x^{4}+14 x^{2}+7 x-8=0$

$$
4+3+3=10
$$

(b) (i) Verify Cayley-Hamilton theorem for $A=\left(\begin{array}{lll}2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2\end{array}\right)$ and find A^{-1}. $\quad 2+3=5$
(ii) State first principle of induction and using this principle prove that $2^{n}<n$! for $n \in \mathbb{N}$ and $n \geq 4$.

