B.SC. THIRD SEMESTER (PROGRAMME) EXAMINATIONS, 2021

Subject: Mathematics
Course Title: Algebra

Full Marks: 40

Course ID: 32118

Course Code: SP/MTH/301/C-1C

The figures in the margin indicate full marks

Notations and symbols have their usual meaning

1. Answer any five of the following questions:

a) Using Principle of Mathematical Induction, prove that $3^{2 n-1}+2^{n+1}$ is divisible by 7 for all natural number n.
b) Prove that $\frac{(n+1)^{n}}{2^{n}}>n$!
c) Find the values of i^{i}
d) Apply Descartes' rule of sign to examine the nature of roots of the equation
$x^{6}+4 x^{4}+2 x^{2}+4 x+1=0$.
e) State fundamental theorem of classical algebra.
f) Find the dimension of the subspace W of R^{3} defined by

$$
W=\left\{(x, y, z) \in R^{3}: x+y+z=0\right\}
$$

g) Determine the rank of the matrix

$$
A=\left[\begin{array}{lll}
2 & 0 & 1 \\
3 & 3 & 0 \\
6 & 2 & 3
\end{array}\right]
$$

h) Use Cayley-Hamilton theorem to compute A^{-1} where

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 2 & 1 \\
2 & 3 & 2
\end{array}\right]
$$

2. Answer any four of the following questions:
a) If $\alpha=\cos \frac{2 \pi}{n}+i \sin \frac{2 \pi}{n}$ and if p is prime to n, prove that $1+\alpha^{p}+\alpha^{2 p}+\cdots+\alpha^{(n-1) p}=0$.
b) If α be a root of the equation $x^{3}-3 x-1=0$, prove that the other roots are $2-\alpha^{2}$ and $\alpha^{2}-\alpha-2$.
c) How many different relations can be defined on a set with n elements? How many of these are reflexive?
d) Determine the conditions for which the system of equations has (a) only one solution, (b) no solution, (c) many solution

$$
\begin{gathered}
x+y+z=1 \\
x+2 y-z=b \\
5 x+7 y+a z=b^{2}
\end{gathered}
$$

e) Determine the linear mapping $T: R^{3} \rightarrow R^{2}$ which maps the basis vectors $(1,0,0),(0,1,0)$, $(0,0,1)$ of R^{3} to the vectors $(1,1),(2,3),(3,2)$ of R^{2} respectively. Hence find $T(6,1,1)$.
f) Find the eigen values and the corresponding eigen vectors of the real matrix

$$
\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 5
\end{array}\right]
$$

3. Answer any one of the following questions:
$(10 \times 1=10)$
a) (i) Find the least positive residue in $2^{41}(\bmod 23)$
(ii) If n be a positive integer, prove that $\frac{1}{2 \sqrt{ }(n+1)}<\frac{1.3 .5 \ldots . .(2 n-1)}{2.4 .6 \ldots . .2 n}<\frac{1}{\sqrt{(2 n+1)}}$
(iii) Solve by Cardan's method $x^{3}-27 x-54=0$. $2+4+4$
b) (i) In $R^{2}, \alpha=(3,1), \beta=(2,-1)$. Determine $L\{\alpha, \beta\}$ and hence show that $L\{\alpha, \beta\}=R^{2}$.
(ii) If α is an eigen value of a real orthogonal matrix A , then prove that $\frac{1}{\alpha}$ is also an eigen value of A.
(iii) Obtain the fully reduced normal form of the matrix

$$
\left(\begin{array}{llll}
2 & 4 & 1 & 0 \\
1 & 2 & 0 & 3 \\
3 & 6 & 2 & 5
\end{array}\right)
$$

