M.Sc.-III/Physics-301C/18

M.Sc. 3rd Semester Examination, 2018

PHYSICS

Course Title: Solid State Physics

Paper : PHY 301C

Course ID : 32451

Time: 2 Hours

Full Marks: 40

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

1. Answer *any five* questions:

- (a) If the energy wave number relation for an electron in some material is $E = E_0 + 2A \cos (Ka)$. Show that electron's positions is a function of time (ignore scattering). 2
- (b) The relative permittivity of Ge is 16. The edge length of the convertial cubic cell for Ge lattice is $5.65 \times 10^{-10}m$. Calculate the electronic polarisability of Ge atoms. 2
- (c) Calculate the frequency of radiation which must be incident on a substance placed in a magnetic field of strength $\left(5 \times \frac{10^5}{\pi}\right)$ ampere/ metre, so that the electrons can absorb energy. 2
- (d) A paramagnetic material is subjected to a homogeneous field of 10⁶ ampere/ metre at 37°C. Calculate the average magnetic moment along the field direction per spin in Bohr magneton.
- (e) Draw (010), (110), (111) planes for a cubic crystal of Lattice constant 'a'. 2
- (f) Write down Widemann Franz's law related with the free electron theory of solid.
- (g) Write down the dispersion relation for the One dimensional monoatomic lattice. Draw the dispersion curve form within the range $-\frac{\pi}{a} < q < \frac{\pi}{a}$. 1+1=2

2. Answer *any four* questions:

(a) In the one-dimensional Kroning-Penney (KP) model derive the following energy-momentum relation.

$$Cos Ka = Cos (\alpha a) + \frac{Psin\alpha a}{\alpha a}$$

Where $\alpha = \sqrt{\frac{2mE}{n^2}}$, *a* is the lattice constant and K is the wave number. 5

32451/9495

Please Turn Over

 $2 \times 5 = 10$

2

2

 $5 \times 4 = 20$

M.Sc.-III/Physics-301C/18

- (b) (i) 'Zero resistivity and perfect diamagnetism' are two independent criteria for an ideal superconductor'.— Explain the statement.
 - (ii) How does entropy change for a material from normal state to superconducting state?
- (c) (i) Show that Hall coefficient for free electron in solid $R_H = -\frac{1}{ne} (n \rightarrow \text{electron density})$
 - (ii) Write down the Hall coefficient for a impure semiconductor containing n, p, number of electrons and holes per m^3 respectively. 4+1=5
- (d) (i) Prove that the close packing of atoms in the Hexagonal close packed (hcp) structure demands an axial ratio, $\frac{c}{a} = \sqrt{\frac{8}{3}}$.
 - (ii) Calculate packing factor of hcp structure. 3+2=5
- (e) (i) Draw two dispersion branches of a diatomic lattice $(M_1 < M_2)$, showing the frequency gap.
 - (ii) Discuss acoustic mode and optical mode at infinite wavelength (q = 0). 2+3=5
- (f) From the aspect of free electron theory for a fermi gas in alkali metals and in nobel metals, discuss Pauli paramagnetism. Derive also Pauli paramagnetic susceptibility.
 2+3=5
- 3. Answer *any one* question:
 - (a) For a ferromagnetic substance:
 - (i) Write down its basic features.
 - (ii) Discuss Weiss theory of ferromagnetism under $T>T_C$, $T<T_C$, $T=T_C$.
 - (iii) Derive Curie-Weiss law.
 - (iv) Discuss the ground state of free iron atom by using Hund rules. 2+3+3+2=10
 - (b) (i) 'Transition from normal state to superconducting state is a second order phase transition'— Explain.
 - (ii) What is Josephson's effect? Show mathematically that an alternating current is produced in a Josephson junction by applying a dc voltage.
 - (iii) Write down London equation, which describe the electrodynamics of the supercurrent. Define London penetration depth. $2\frac{1}{2}+5+2\frac{1}{2}=10$

10×1=10

3+2=5