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  Candidates are required to give their answers in their own words 
as far as practicable. 

Notations and Symbols have their usual meanings. 

        Answer any five questions: 5×8=40 

 1.  (a) Define adjoint operator of an operator :  , where ,  are normed linear spaces. Also 
find the adjoint operator of an operator :  , where ( )  =   and ( ) =   (a constant),  ∈      ∈  ˊ.  

   (b) If , ,  ∈  ( , ) and ,  be any scalars, then show that 

    (  +   ) =  +   . 2+3+3=8 

 2. (a) Let ,  be normed linear spaces. Then show that the operator :   is compact iff it maps 
every bounded sequence  in X onto a sequence  in Y which has a convergent 
subsequence. 

  (b) Show that the operator :   , defined by ( )( ) = , where =  is compact. 

  (c) Does there exist a compact linear operator : →  which is onto. 3+3+2=8 

 3. (a) Show that any totally bounded subset of a complete metric space is relatively compact.  

   (b) Let ,  be two normed linear spaces. Show that the adjoint operator of a compact linear 
operator is compact. 3+5=8  

 4. (a) Let :   be a compact linear operator on a normed linear space  and let  ≠ 0. Then 
show that −  =  has a solution iff g is such that ( ) = 0.  ∈  satisfying – = θ. 

   (b) If T be a compact linear operator on a normed linear space X, then show that for every  ≠ 0, 
null space of  is finite dimensional. 5+3=8 

 5. (a) Let X be a complex inner product space. If :   is a bounded linear operator such that 〈 , 〉 = 0,  ∈ , then show that = 0. 

   (b) Give an example of an operator ‘T’ on a normed linear space X such that 〈 , 〉 = 0, 
 ∈  but ≠ 0.  
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   (c) Show that a bounded linear operator T on a complex Hilbert space is unitary if T is isometric 
and onto. 3+2+3=8 

 6. (a) Define positive operator. 

   (b) Let  be a sequence of bounded self adjoint linear operator on a complex Hilbert space H 
such that ≤ ≤ ⋯ ≤ …  ≤ , where K is a bounded self adjoint operator on H. If any 

 commutes with every  and K, then show that  is strongly operator convergent to a 
bounded self adjoint operator. 1+7=8 

 7. (a) Let ,  be two projections on a Hilbert space H. Then show that 

     (i)   is a projection on H iff = . 

     (ii) −  projects H onto [ ( )] ∩ [ ( )], if −  is a projection on H. 

   (b) Show that for any projection P on a Hilbert space H, 0 ≤ ‖ ‖ ≤ 1. 3+3+2=8 

 8. (a) Let H be a Hilbert space. If :   is self adjoint then show that 〈 , 〉 is real  ∈ . 

   (b) Let S and T be two bounded linear operators on a Hilbert space H. If S is unitary equivalent 
to T and T is self adjoint. Then show that S is self adjoint. 

   (c) Let : →  defined by = ( + , − ) where = ( , ). Find Hilbert adjoint 
T*. 

   (d) Let : →  be a projection on a Hilbert space , = 1,2, … , . If + + ⋯ +  be a 
Projection, then show that ‖ ‖ + ‖ ‖ + ⋯ + ‖ ‖ ≤ ‖ ‖  for all ∈ .  

       1+2+3+2=8  
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