9492-Bank-III-Math-304ME-18-Q.docx

M.Sc.-III/Mathematics-304ME/18

M.Sc. 3rd Semester Examination, 2018 MATHEMATICS

(OTA-I)

Paper : 304ME Course ID : 32154

Time: 2 Hours

Full Marks: 40

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

> Notations and Symbols have their usual meanings. Answer any five questions:

5×8=40

- 1. (a) Define adjoint operator of an operator $T: X \rightarrow Y$, where X, Y are normed linear spaces. Also find the adjoint operator of an operator $T: X \rightarrow Y$, where T(x) = y and g(y) = k (a constant), $\forall x \in X$ and $\forall g \in Y'$.
 - (b) If $T_1, T_2, T_3 \in B(X, Y)$ and α, β be any scalars, then show that $(\alpha T_1 + \beta T_2 T_3)^X = \alpha T_1^X + \beta T_3^X T_2^X.$ 2+3+3=8
- 2. (a) Let X, Y be normed linear spaces. Then show that the operator $T: X \rightarrow Y$ is compact *iff* it maps every bounded sequence $\{x_n\}_n$ in X onto a sequence $\{Tx_n\}_n$ in Y which has a convergent subsequence.
 - (b) Show that the operator T: $l^2 \rightarrow l^2$, defined by $(Tx)(n) = \frac{x_n}{2^n}$, where $x = \{x_n\}_n$ is compact.
 - (c) Does there exist a compact linear operator $T: l^{\infty} \to l^{\infty}$ which is onto. 3+3+2=8
- **3.** (a) Show that any totally bounded subset of a complete metric space is relatively compact.
 - (b) Let *X*, *Y* be two normed linear spaces. Show that the adjoint operator of a compact linear operator is compact. 3+5=8
- 4. (a) Let $T: X \to X$ be a compact linear operator on a normed linear space X and let $\lambda \neq 0$. Then show that $T^X f \lambda f = g$ has a solution *iff* g is such that g(x) = 0. $\forall x \in X$ satisfying $Tx \lambda x = \theta$.
 - (b) If T be a compact linear operator on a normed linear space X, then show that for every $\lambda \neq 0$, null space of T_{λ} is finite dimensional. 5+3=8
- 5. (a) Let X be a complex inner product space. If $T: X \to X$ is a bounded linear operator such that $\langle Tx, x \rangle = 0, \forall x \in X$, then show that T = 0.
 - (b) Give an example of an operator 'T' on a normed linear space X such that $\langle Tx, x \rangle = 0$, $\forall x \in X$ but $T \neq 0$.

M.Sc.-III/Mathematics-304ME/18 (2)

- (c) Show that a bounded linear operator T on a complex Hilbert space is unitary if T is isometric and onto. 3+2+3=8
- **6.** (a) Define positive operator.
 - (b) Let $\{T_n\}_n$ be a sequence of bounded self adjoint linear operator on a complex Hilbert space H such that $T_1 \leq T_2 \leq \cdots \leq T_n \ldots \leq K$, where K is a bounded self adjoint operator on H. If any T_i commutes with every T_j and K, then show that $\{T_n\}_n$ is strongly operator convergent to a bounded self adjoint operator. 1+7=8
- 7. (a) Let P_1, P_2 be two projections on a Hilbert space H. Then show that
 - (i) P_1P_2 is a projection on H iff $P_1P_2 = P_2P_1$.
 - (ii) $P_2 P_1$ projects H onto $[P_1(H)]^{\perp} \cap [P_2(H)]$, if $P_2 P_1$ is a projection on H.
 - (b) Show that for any projection P on a Hilbert space H, $0 \le ||P|| \le 1$. 3+3+2=8
- 8. (a) Let H be a Hilbert space. If $T: H \to H$ is self adjoint then show that $\langle Tx, x \rangle$ is real $\forall x \in H$.
 - (b) Let S and T be two bounded linear operators on a Hilbert space H. If S is unitary equivalent to T and T is self adjoint. Then show that S is self adjoint.
 - (c) Let $T: C^2 \to C^2$ defined by $Tx = (\xi_1 + i\xi_2, \xi_1 i\xi_2)$ where $x = (\xi_1, \xi_2)$. Find Hilbert adjoint T*.
 - (d) Let $P_i: H \to H$ be a projection on a Hilbert space H, i = 1, 2, ..., n. If $P_1 + P_2 + \cdots + P_n$ be a Projection, then show that $||P_1x||^2 + ||P_2x||^2 + \cdots + ||P_nx||^2 \le ||x||^2$ for all $x \in H$.

1+2+3+2=8