POSTGRADUATE THIRD SEMESTER EXAMINATIONS, 2021

Subject: Mathematics Course Code: Math-301C		Course ID: 32151 Course Title: Functional Analysis			
Full Marks: 40		Time: 2 Hours			
The figures in the margin indicate full marks					
Notations and symbols have their usual meaning					
	Answer any Five of the following questions:	(8×5=4	D)		
1.	(a) If <i>f</i> is a linear functional defined on <i>E</i> and <i>E</i> is of finite dime	ension, prove that <i>f</i> is			
	bounded. Is the linear functional <i>f</i> continuous? Justify your an	nswer.	4+1		
	(b)Prove that in an inner product space X, $ (x, y) \le x y $. Find also the necessary and				
	sufficient conditions for the equality.		3		
2.	(a) Give an examplewith justification of a Banach space which	is not a Hilbert space.	3		
	(b) Let E, F be normed linear spaces. Prove that for $A \in L(E, R)$	⁷),			
	$ A = \sup\{ Ax : x \le 1\}.$		3		
	(c) What is meant by a function space? Give an example of su	ch a space. 1+	·1		
3.	(a) Prove that in a normed linear space <i>E</i> , if $\{x_n\}$ is a Cauchy s	in a normed linear space <i>E</i> , if $\{x_n\}$ is a Cauchy sequence of elements and			
	$\{\lambda_n\}$ is a Cauchy sequence of scalers, then $\{\lambda_n x_n\}$ is also a Cau	ichy sequence in <i>E</i> .	3		
	(b) If <i>M</i> and <i>N</i> are closed subspaces of a Hilbert space <i>H</i> such	that $M\perp N$, prove that	the		
	subspace <i>M</i> + <i>N</i> is closed.		4		
	(c) Find the norm of the identity linear transformation.		1		
Л	(a) Let $T_{1} \mathbb{D}^{4} \rightarrow \mathbb{D}^{2}$ be a linear transformation defined by				

4. (a) Let $T: \mathbb{R}^4 \to \mathbb{R}^2$ be a linear transformation defined by

$$T\begin{bmatrix}a\\b\\c\\d\end{bmatrix} = \begin{bmatrix}a+d\\b+c\end{bmatrix}$$

for all $\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \in \mathbb{R}^4$.

Show that *T* is onto but not one-one.

2+2

	(b) Prove that the closure of a convex subset of a normed linear space is also convex.	3
	(c) Show that the norm function is continuous.	1
5.	(a) If the dual space E^* of a normed linear space E is separable, prove that E is also	
	separable.	5
	(b) If <i>M</i> is a closed subspace of a Hilbert space <i>H</i> , then show that $M^{\perp\perp} = M$.	3
6.	(a) Let C be a closed convex subset of a Hilbert space H. Prove that C contains a unique	
	element of the smallest norm.	5
	(b) Prove that on a finite dimensional linear space X, any norm $\ \cdot \ _1$ is equivalent to any	
	other norm $\ .\ _2$.	3
7.	(a) Give an example with justification of a linear transformation which is not bounded.	3

$$\sum_{i=1}^{\infty} \alpha_i e_i$$

where $\alpha_1, \alpha_2, ...$ are scalars is convergent if and only if the series $\sum_{i=1}^{\infty} |\alpha_i|^2$

8.

3

5

(b) Prove that the normed space X of all polynomials with norm defined by

$$||x|| = \frac{\max_{j} |\alpha_{j}|}{j} |\alpha_{0}, \alpha_{1}, \dots$$
 are the coefficients of x)

is not complete.

(c) Let *M* and *N* be two subspaces of a linear space *L* such that L=M+N. Write down a necessary and sufficient condition for $L = M \bigoplus N$.