M.Sc. 3rd Semester Examination, 2018 CHEMISTRY
 (Inorganic Chemistry)
 Paper : CHEM 301C
 Course ID : 31451

Time: 2 Hours
Full Marks: 40
The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

1. Answer any five:
(a) Predict the product of the following reaction (1 mole of each reactant).
(i) $\left[\mathrm{Pt}(\mathrm{CO}) \mathrm{Cl}_{3}\right]^{-}+\mathrm{NH}_{3} \longrightarrow$??
(ii) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right) \mathrm{Br}_{3}\right]^{-}+\mathrm{NH}_{3} \longrightarrow$??
(b) What do you mean by kinetically INERT and LABILE complexes?
(c) 'The pressure dependence of the replacement of chlorobenzene (PhCl) by piperidine in the complex $\left[\mathrm{W}(\mathrm{CO})_{4}\left(\mathrm{PPH}_{3}\right)(\mathrm{PhCl})\right]$ has been studied. The volume of activation is found to be $+50.3 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$. What does this value suggest about the mechanism?
(d) Magnetic susceptibility χ_{m} for a transition metal compound is measured $14.33 \times 10^{-3} \mathrm{~cm}^{3} \mathrm{Kmol}^{-1}$. Fitting the susceptibility $\theta-4.95$ at 300 K . What is Curie constant C?
(e) Define Supramolecule.
(f) Explain with example preorganisation.
(g) What are the effects of global warming?
2. Answer any four:
(a) (i) Write down the types of nucleophilic substitution in coordination complexes.
(ii) How are they related with activation parameters $\left(\Delta \mathrm{S}^{\neq}\right.$and $\left.\Delta \mathrm{V}^{\neq}\right)$?
(iii) How can you determine the entropy of activation $\left(\Delta S^{\neq}\right)$(explain with equation)?
(b) (i) " $\mathrm{V}(\mathrm{CO})_{6}$ undergoes substitution reaction by PPh_{3} very fast rate, However $\mathrm{V}(\mathrm{CO})_{6}{ }^{-}$ does not react even with molten PPh_{3}." Explain.
(ii) Justify the statement: "Rate of hydrolysis in basic aqueous medium of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{2+}$ is much faster than $\left[\mathrm{Co}(\mathrm{py})_{5} \mathrm{Cl}\right]^{2+} . "$
(iii) "Rate of substitution of $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ is very slow as compared to $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ ". —Justify.
$2+2+1=5$
(c) (i) Predict and explain the geometry of the intermediate and final product(s) of the following:

(ii) Arrange the following complexes in increasing order of water exchange rate: $\left[\mathrm{Sr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+},\left[\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and $\left[\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$. $2+3=5$
(d) (i) Draw the magnetic susceptibility (χ) versus temperature (T) graph for ferromagnetic, paramagnetic and anti-ferromagnetic complexes.
(ii) When does orbital angular momentum contribute to magnetic moment?
(e) (i) Name three types of noncovalent interactions and explain.
(ii) What is template effect?
(f) (i) What is difference between pollutant and contaminant?
(ii) Write short note on Bhopal gas tragedy.
3. Answer any one:
(a) (i) For the reaction:
$\left[\mathrm{R} \cup\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}+\left[\mathrm{Co}(\text { phen })_{3}\right]^{3+} \longrightarrow\left[\mathrm{R} \cup\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}+\left[\mathrm{Co}(\text { phen })_{3}\right]^{2+}$ the observed rate constant is $1.5 \times 10^{4} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ and the equilibrium constant is 2.6×10^{5}. The rate constants for the self-exchange reactions $\left[\mathrm{R} \cup\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+} /$ $\left[\mathrm{R} \cup\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ and $\left[\mathrm{Co}(\text { phen })_{3}\right]^{2+} /\left[\mathrm{Co}(\text { phen })_{3}\right]^{3+}$ are 8.2×10^{4} and $40 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ respectively. Are these results consistent with an outer-sphere mechanism for the cross-reaction?
(ii) The compound $\left[\mathrm{Fe}(\mathrm{SCN})\left(\mathrm{OH}_{2}\right)_{5}\right]^{2+}$ can be detected in the reaction of $\left[\mathrm{Co}(\mathrm{NCS})\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}$ with $\mathrm{Fe}^{2+}(\mathrm{aq})$ to give $\mathrm{Fe}^{3+}(\mathrm{aq})$ and $\mathrm{Co}^{2+}(\mathrm{aq})$. What does this observation suggest about the mechanism?
(iii) Calculate the effective magnetic moment of $\operatorname{Pr}^{3+}\left(4 f^{2}\right)$.
(iv) "The effective magnetic moment $\left(\mu_{e f f}=5 \cdot 2\right)$ of high spin Co^{2+} is different from spin only (μ_{so}) magnetic moment." Justify the statement with mathematical manipulation.
(b) (i) What is rotaxane? Give one example for synthesis of catenane.
(ii) Give one example of supramolecular catalysis.
(iii) Suggest ways how pollution caused by plastic can be reduced.
