M.Sc.-III/CHEM-301C/18

M.Sc. 3rd Semester Examination, 2018

CHEMISTRY

(Inorganic Chemistry)

Paper: CHEM 301C

Course ID : 31451

Time: 2 Hours Full Marks: 40

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

1. Answer any five: $2 \times 5 = 10$

- (a) Predict the product of the following reaction (1 mole of each reactant).
 - (i) $[Pt(CO)Cl_3]^- + NH_3 \longrightarrow ??$
 - (ii) $[Pt(NH_3)Br_3]^- + NH_3 \longrightarrow ??$
- (b) What do you mean by kinetically INERT and LABILE complexes?
- (c) 'The pressure dependence of the replacement of chlorobenzene (PhCl) by piperidine in the complex [W(CO)₄(PPH₃)(PhCl)] has been studied. The volume of activation is found to be + 50·3 cm³ mol⁻¹'. What does this value suggest about the mechanism?
- (d) Magnetic susceptibility χ_m for a transition metal compound is measured $14.33 \times 10^{-3} \text{cm}^3 \text{Kmol}^{-1}$. Fitting the susceptibility θ 4.95 at 300K. What is Curie constant C?
- (e) Define Supramolecule.
- (f) Explain with example preorganisation.
- (g) What are the effects of global warming?
- 2. Answer any four: $5 \times 4 = 20$
 - (a) (i) Write down the types of nucleophilic substitution in coordination complexes.
 - (ii) How are they related with activation parameters (ΔS^{\pm} and ΔV^{\pm})?
 - (iii) How can you determine the entropy of activation (ΔS^{\pm}) (explain with equation)?

2+2+1=5

(b) (i) " $V(CO)_6$ undergoes substitution reaction by PPh₃ very fast rate, However $V(CO)_6^-$ does not react even with molten PPh₃." Explain.

31451/9504 Please Turn Over

M.Sc.-III/CHEM-301C/18

(2)

- (ii) Justify the statement: "Rate of hydrolysis in basic aqueous medium of $[Co(NH_3)_5Cl]^{2+}$ is much faster than $[Co(py)_5Cl]^{2+}$."
- (iii) "Rate of substitution of $[Cr(H_2O)_6]^{3+}$ is very slow as compared to $[Fe(H_2O)_6]^{3+}$ ".

 —Justify.

 2+2+1=5
- (c) (i) Predict and explain the geometry of the intermediate and final product(s) of the following:

- (ii) Arrange the following complexes in increasing order of water exchange rate: $[Sr(H_2O)_6]^{2+}$, $[Ca(H_2O)_6]^{2+}$ and $[Mg(H_2O)_6]^{2+}$. 2+3=5
- (d) (i) Draw the magnetic susceptibility (χ) versus temperature (T) graph for ferromagnetic, paramagnetic and anti-ferromagnetic complexes.
 - (ii) When does orbital angular momentum contribute to magnetic moment? 3+2=5
- (e) (i) Name three types of noncovalent interactions and explain.
 - (ii) What is template effect? 3+2=5
- (f) (i) What is difference between pollutant and contaminant?
 - (ii) Write short note on Bhopal gas tragedy. 2+3=5

3. Answer *any one*:

 $10 \times 1 = 10$

(a) (i) For the reaction:

 $[R \cup (NH_3)_6]^{2+} + [Co(phen)_3]^{3+} \longrightarrow [R \cup (NH_3)_6]^{3+} + [Co(phen)_3]^{2+}$ the observed rate constant is 1.5×10^4 dm³ mol⁻¹ s⁻¹ and the equilibrium constant is 2.6×10^5 . The rate constants for the self-exchange reactions $[R \cup (NH_3)_6]^{2+}/[R \cup (NH_3)_6]^{3+}$ and $[Co(phen)_3]^{2+}/[Co(phen)_3]^{3+}$ are 8.2×10^4 and $40 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$ respectively. Are these results consistent with an outer-sphere mechanism for the cross-reaction?

- (ii) The compound $[Fe (SCN)(OH_2)_5]^{2+}$ can be detected in the reaction of $[Co (NCS)(NH_3)_5]^{2+}$ with $Fe^{2+}(aq)$ to give $Fe^{3+}(aq)$ and $Co^{2+}(aq)$. What does this observation suggest about the mechanism?
- (iii) Calculate the effective magnetic moment of $Pr^{3+}(4f^2)$.
- (iv) "The effective magnetic moment ($\mu_{eff} = 5.2$) of high spin Co²⁺ is different from spin only (μ_{so}) magnetic moment." Justify the statement with mathematical manipulation. 3+2+3+2=10
- (b) (i) What is rotaxane? Give one example for synthesis of catenane.
 - (ii) Give one example of supramolecular catalysis.

(iii) Suggest ways how pollution caused by plastic can be reduced. (2+3)+3+2=10