B.Sc. $3^{\text {rd }}$ Semester (Honours) Examination, 2021-22

PHYSICS

Course Title: Mathematical Physics - II

Time: 1 Hour 15 Minutes
Full Marks: 25
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words
As far as practicable

Section-I

1. Answer any five questions:
(a) Simplify $(\cos 2 \pi / 3+i \sin 2 \pi / 3)$.
(b) What is cyclic co-ordinate?
(c) Discuss the nature of singularity of the function $f(z)=\frac{1-\cosh z}{z^{2}}$ at $\mathrm{z}=0$.
(d) $\mathrm{A}=\left[\begin{array}{ccc}i & 1-i & 2 \\ -1-i & 3 i & i \\ -2 & i & 0\end{array}\right]$, Show that matrix A is Skew-Hermitian.
(e) A bag contains 7 red and 8 black balls. Find the probability of drawing a red ball.
(f) Write down the expression of Gauss normal distribution function.
(g) Write down Hamilton's canonical equations of motion.
(h) Define Dirac delta function.

Section-II

2. Answer any two questions:
(a) Discuss the analyticity of the function $f(z)=z-\bar{z}$
(b) A Lagrangian is in the form $L=\frac{1}{2} \alpha \dot{q}^{2}-\frac{1}{2} \beta q^{2}$, where α and β are constant, Find -
(i) Hamiltonian of the system.
(ii) The equation of motion.
(c) Prove that $\delta(b t)=\frac{\delta(t)}{|b|}$.
(d) Evaluate the integral $I=\oint z^{1+i} d z$ over the positively oriented unit circle.

Section-III

3. Answer any one question:
$10 \times 1=10$
(a) Find the eigenvalues and normalized eigenvectors of the real symmetric matrix
$A=\left(\begin{array}{ccc}1 & 1 & 3 \\ 1 & 1 & -3 \\ 3 & -3 & -3\end{array}\right)$
(b) Find the residue of $f(z)=\frac{z}{\left(z^{2}+1\right)^{2}}$ at $z=i$. Find $I=\int_{0}^{2 \pi} \frac{d \theta}{5+4 \cos \theta}$ using residue theorem. $\quad(3+7)$
