16402-BNK-M.A.-III-BCA-304-19-B.docx

Course Code : BCA-304

SH-III/BCA-304/19

BCA 3rd Semester (Honours) Examination, 2019-20 BACHELOR OF COMPUTER APPLICATION

Course ID :

Time: 4 Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Course Title : Mathematics-III

Group-A

- **1.** Answer *all* the questions:
 - (i) The number of significant digits in $4 \cdot 560 \times 10^4$ is
 - (a) 2
 - (b) 3
 - (c) 4
 - (d) 5
 - (e) None of the above
 - (ii) The polynomial (interpolation formula) of degree three relevant to the data
 - (iii) The coefficient of the range for the following observations:
 - 20, 10, 37, 15, 90, 58, 60 is
 - (a) 0·6
 - (b) 0·7
 - (c) 0·8
 - (d) 0·9
 - (e) None of the above

Full Marks : 80

- (iv) The mean of 1, 2, 3, ... $2m(m \ge 2)$ is
 - (a) m(m+1)/2
 - (b) 2m(2m+1)/2
 - (c) (2m+1)/2
 - (d) (m+1)/2
 - (e) None of the above
- (v) The Newton's Raphson's method fails when
 - (a) f'(x) is (-)ve
 - (b) f'is(+)ve
 - (c) f'(x) is too log e
 - (d) f'(x) is zero
 - (e) None of the above
- (vi) In the case of Bisection method, the convergence is
 - (a) linear
 - (b) quadratic
 - (c) very slow
 - (d) non-linear
 - (e) None of the above
- (vii) The probability of 54 Sunday in a leap year is
 - (a) 1/7
 - (b) 2/7
 - (c) 3/7
 - (d) 4/7
 - (e) None of the above
- (viii) Let f(x) is given by

Then using Trapezoidal rule the value of $\int_0^1 f(x) dx$ is

- (a) 0 · 775
- (b) 0 · 755
- (c) 0 · 577
- (d) 0.557
- (e) None of the above
- (ix) Let A and B be two independent events with $P(A \cup B)=0.58$ and $P(A \cap B)=0.12$, the possible value of P(A) is
 - (a) $0 \cdot 3$
 - (b) 0 · 4
 - (c) Both (a) and (b)
 - (d) $0 \cdot 5$
 - (e) None of the above

- (x) In the Newton's forward interpolation formula the value $u = \frac{x x_0}{u}$ lies between
 - (a) 1 and 2
 - (d) -1 and 1
 - (c) -1 and -2
 - (d) 0 and α
 - (e) None of the above

Group-B

- 2. Answer *any ten* questions:
 - (i) What do you mean by 'statistical regularity'?
 - (ii) What is probability density function?
 - (iii) Define 'Random variable' and 'Random experiment'.
 - (iv) Define 'Inherrent Error' with example.
 - (v) What is 'Histogram'?
 - (vi) Define 'Absolute Error' and 'Relative Error'.
 - (vii) Compute the percentage error in the time period $T = 2\pi\sqrt{l/q}$ for l = 1m if the error in the measurement of *l* is $0 \cdot 01$.
 - (viii) Prove that the second order forward difference are zero for the function f(x) = 2x + 5.
 - (ix) State geometrical significance of Trapezoidal Rule.
 - (x) What do you mean by likelihood function?
 - (xi) Show that probability of complementary events \overline{A} of the even A is given by $P(\overline{A}) = 1 P(A)$.
 - (xii) Write geometrical representation of Newton-Raphson method.
 - (xiii) Define Regula Falsi method to find the root of an equation.
 - (xiv) Show that $P(AB) \ge P(A) + P(B) 1$.
 - (xv) What do you mean by 'confidence intervals'?

Group-C

- 3. Answer *any four* questions:
 - (i) Write a program to implement Simpson's Rule to evaluate to integral $\int_0^1 \frac{dx}{x^2 2x + 3}$ using sub-intervals. 5
 - (ii) When two events are independent? If two events A and B are independent show that A and \overline{B} are independent and hence show that \overline{A} and \overline{B} are independent.
 - (iii) Determine the value of the constant K s. t f(x) is defined by

f(x) = Kx(1-x), 0 < x < 1

= 0, elsewhere

is a probability density function and find the corresponding distribution function and $P(X \ge \frac{1}{2})$.

2×10=20

SH-III/BCA-304/19

- (iv) *A* and *B* are two events associated with the some experiment *E* and P(A + B) = 7/8, P(AB) = 1/4 and $P(\overline{A}) = 5/8$. Find P(A), P(B) and $P(A\overline{B})$ and find out whether the events *A* and *B* are independent to each other.
- (v) Given that $\frac{dy}{dx} = x^2 + y^2$, y(0) = 0, compute $y(0 \cdot 15)$ by Euler method correct up to four decimal places taken up step length $h = 0 \cdot 05$.
- (vi) Using the Newton's forward interpolation formula from the following table:

Years	1998	2000	2002	2004	2006
Sales (Rs.)	40	43	48	52	57

Group-D

4. Answer *any three* questions:

(i) Find f(102) from the following table:

<i>x</i> :	93·0	96.2	100.0	104.2	108.7
y = f(x):	11.38	12.80	14.70	17.07	19.91

- (ii) Deduce Fourth order Runga-Kutta method and give advantage and disadvantage of this method.
- (iii) Solve by Gauss-Elimination method.

3x + 9y - 2Z = 11, 4x + 2y + 13Z = 24, 4x - 2y + Z = -8

- (iv) Define correlation coefficient between two random variables. If $a \neq 0$, $c \neq 0$, b, d are constant, then show that $\rho(aX + b, cy + d) = \frac{ac}{|a||c|}\rho(X, Y)$ and also show that $-1 \le \rho(X, Y) \le 1$.
- (v) Using Newton-Raphson method, find a real root to the equation $x^4 x 10 = 0$ which is nearer to x = 2 correct up to three place of decimals.
- (vi) Calculate the arithmetic mean, median and mode for the following frequency distribution:

 Height:
 56-60
 61-65
 66-70
 71-75
 76-80

 No. of Persons:
 7
 25
 43
 28
 7

10×3=30