BCA 3 ${ }^{\text {rd }}$ Semester (Honours) Examination, 2021 BACHELOR OF COMPUTER APPLICATION

Course ID : 33314
Course Code : BCA-GE-03

Course Title : Mathematics-II

Time : 3 Hours
Full Marks : 80

The figure in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Group-A

1. Answer all the questions from the following. Choose Correct Options: $10 \times 1=10$
i. $\lim _{x \rightarrow 0} \frac{|x|}{x}$ is
a) -1
b) 1
c) does not exist
d) None of these
ii. The function $f(x)=\frac{x-|x|}{x}$ is
a) continues everywhere
b) continues for all except Zero
c) discontinues everywhere
d) None of these
iii. The function $f(x)=x|x|$ is
a) discontinues
b) continues but not differentiable at origin
c) differentiable but not continuous at origin
d) None of these
iv. The conditions of Roll's theorem are
a) sufficient
b) necessary
c) sufficient and necessary
d) None of these
v. The value of $\int_{0}^{1} \frac{d x}{2 x^{2}+3 x+1}$ is
a) $\log \frac{3}{8}$
b) $\log \frac{3}{2}$
c) $\log \frac{2}{3}$
d) None of these
vi. The Value of $\lim _{n \rightarrow \infty} \frac{1+2^{10}+3^{10} \ldots \ldots+n^{10}}{n^{11}}$ is
a) $\frac{1}{10}$
b) $\frac{1}{21}$
C) $\frac{1}{11}$
d) None of these
vii. The degree of the differential equation $x \frac{d y}{d x}+\left(\frac{d^{2} y}{d x^{2}}\right)^{2 / 3}=0$ is
a) 1
b) 2
c) 3
d) None of these
viii. $y=x^{2}+x$ is the solution of the differential equation
a) $(x+1) d x-d y=0$
b) $(2 x+1) d x+d y=0$
c) $(2 x+1) d x-d y=0$
d) None of these
ix. The sequence $\left\{\frac{3+2 \sqrt{n}}{\sqrt{n}}\right\}$
a) converges to 3
b) converges to 2
c) diverges
d) None of these
x. The series $1+r+r^{2}+r^{3}+$ \qquad converges for
a) $r>1$ b) $r=1 \quad$ c) $r<1$ d) None of these

Group-B

2. Answer any ten questions from the following.

i. Show that $\lim _{(x, y) \rightarrow(0,0)} x y \frac{x^{2}-y^{2}}{x^{2}+y^{2}}=0$
ii. Examine the equality of $f_{x y}$ and $f_{y x}$, where $f_{(x, y)=x^{3} y+e^{x y^{2}}}$
iii. Examine the validity of the hypothesis and conditions of Roll's theorem for $f(x)=x^{3}-4 x$ on $[-2,2]$?
iv. Show that $\lim _{x \rightarrow 0} \frac{e^{1 / x}-1}{e^{1 / x}+1}$ does not exist?
v. Is $f(x)$ continuous at $x=1$ where

$$
\begin{aligned}
F(x) & =2 x, \text { when } 0 \leq x<1 \\
& =3 \text { when } x=1 \\
& =4 x \text { when } 1<x \leq 2 ?
\end{aligned}
$$

vi. If $y=\log (1+x)$, find nth derivative y_{n}.
vii. Examine the convergence of improper integral $\int_{0}^{1} \frac{d x}{\sqrt{1-x}}$
viii. Evaluate : $\int \sqrt{\frac{x-1}{x+1} d x}$?
ix. Evaluate : $\int_{0}^{\pi / 2} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x$
x. Show that $\left\{x_{n}\right\}$, where $x_{n}=1+\frac{1}{2}+\cdots+\frac{1}{n}$ cannot converge.
xi. Show that the infinite series $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\cdots \ldots$ converges.
xii. Show that for any real number $\mathrm{x} \lim _{n \rightarrow \infty} \frac{x^{n}}{n!}=0$
xiii. Solve the differential equation: $\frac{d y}{d x}=\frac{y-x}{y+x}$
xiv. If $f^{\prime}(x)+f(x)=0$ and $f(0)=2$, find $f(x)$
$\mathbf{x v}$. Find the differential equation from the relation $x=a \cos t+b \sin t$ where $\mathrm{a} \& \mathrm{~b}$ are arbitrary constant.

Group-C

3. Answer any four questions from the following.
i. Discuss the derivability of the following function :

$$
\begin{aligned}
f(x) & =2 x-3,0 \leq x \leq 2 \\
& =x^{2}-3,2 \leq x \leq 4
\end{aligned}
$$

at $x=2,4$
ii. State Lagrange's mean value theorem and verify for the function $f(x)=2 x^{2}-7 x+10$ on [2, 5].
iii. Show that the series $\sum_{n=1}^{\alpha} \frac{3.6 \cdot 9 \cdots 3 n}{7 \cdot 10.1 \cdots(3 n+4)} x^{n},(x>0)$ converges for $\mathrm{x} \leq 1$ and diver ges for $x>1$.
iv. If $f(x, y)=\frac{x^{2}-x y}{x+y}$, when $(x, y) \neq(0,0)$

$$
=0 \text { when }(x, y)=(0,0)
$$

find $f_{x}(0,0)$ and $f_{y}(0,0)$
v. Evaluate $\int_{0}^{\pi / 4} \log (1+\tan \theta) d \theta$
vi. Solve the diff. equations: -
a) $\quad(x+y)(d x-d y)=d x+d y$
b) $y(1+x y) d x+x(1-x y) d y=0$

Group-D

4. Answer any three questions from the following.

a. i. Solve :

$$
\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+4 y=x^{2} ; \text { when } x=0, y=\frac{3}{8} \text { and } \frac{d y}{d x}=1
$$

ii. Evaluate :

$$
\int_{2}^{3} \frac{d x}{\sqrt{(x-1)(5-x)}}
$$

b. i. Show that the series $1-\frac{1}{3.2^{2}}+\frac{1}{5.3^{2}}-\frac{1}{7.4^{2}} \cdots \cdots$ is convergent .
ii. Show that $\lim _{n \rightarrow \infty}\left[\frac{1}{\sqrt{n^{2}+1}}+\frac{1}{\sqrt{n^{2}+2}}+\cdots \cdots+\frac{1}{\sqrt{n^{2}+n}}\right]=1$
c. i. Examine for convergence the improper integral $\int_{0}^{\alpha} x^{3} e^{-x^{2}} d x$
ii. Solve:

$$
(6 x-5 y+4) d y+(y-2 x-1) d x=0
$$

d. i. Establish the inequality:

$$
x-\frac{x^{2}}{2}+\frac{x^{3}}{3(1+x)}<\log (1+x)<x-\frac{x^{2}}{2}+\frac{x^{3}}{3}, x>0
$$

ii. Evaluate : $\operatorname{lt}_{x \rightarrow 0} \frac{\sqrt{4+x}-2}{x}$ and $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}$
e. i. Assuming the validity of expansion, show that

$$
e^{x} \cos x=1+x-\frac{2 x^{3}}{3!}-\frac{2^{2} x^{4}}{4!}-\frac{2^{3} x^{5}}{5!}+\cdots
$$

ii. State and prove Euler's theorem for homogeneous function of two variables.
f. i. Show that the equation of the curve whose slope at any point is equal to $y+2 x$ and which passes through the origin is $y=2\left(e^{x}-x+1\right)$
ii. Evaluate :

$$
\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x
$$

