BCA 3rd Semester (Honours) Examination, 2021 BACHELOR OF COMPUTER APPLICATION

Course ID : 33314

Course Title : Mathematics-II

Course Code : BCA-GE-03

Full Marks : 80

Time : 3 Hours

The figure in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Group-A

	e questions from the	following.	Choose Corre	ect Options:	10 X 1 = 10
i. $\lim_{x\to 0}\frac{ x }{x}$ is					
	c) does not exist	d) None d	of these		
ii. The function	$f(x) = \frac{x - x }{ x }$ is				
	x				
	erywhere b) co of these	ntinues for a	all except Zero	c) discontin	ues everywhere
iii. The function	f(x) = x x is				
a) discontinues	b) continues but not	differentiabl	e at origin	c) differentiable but	t not continuous at
origin	d) None of these				
iv. The conditio	ns of Roll's theorem	are			
a) sufficient	b) necessary	С) sufficient and	I necessary	d) None of these
v. The value of	$\int^1 \frac{dx}{dx}$ is				
	$y_0 2x^2 + 3x + 1$	2			
a) $\log \frac{-}{8}$	b) $\log \frac{3}{2}$	c) $\log \frac{1}{3}$		d) None of these	
vi. The Value of	$\lim_{n \to \infty} \frac{1 + 2^{10} + 3^{10} \dots + n^{10}}{n^{11}}$ b) $\frac{1}{21}$ c) $\frac{1}{11}$	is			
a) $\frac{1}{12}$	b) $\frac{1}{24}$ c) $\frac{1}{44}$	d) None (of these		
10	21 11				
vii. The degree of	of the differential eq	uation $x \frac{dy}{dx}$ -	$+\left(\frac{d^2y}{dx^2}\right)^{2/3}=0$	is	
	b) 2 c) 3		(
viii v−v² ±v ic th	e solution of the diff	arantial agu	ation		
a) (x +1)dx –dy=		-		0 d) None of t	thoso
u) (X · I)ux · uy-	5) (21 · 1)01	uy –o c	/ (2X) 1/UX Uy-		
ix. The sequence	$e\left\{\frac{3+2\sqrt{n}}{\sqrt{n}}\right\}$				
a) converges to	3 b) converges	to 2 c) diverges	d) None of these	
x. The series 1 +	• r + r ² + r ³ + co	onverges for			
a) r>1 b) r=1 c)	r<1 d) None of these				

Group-B

2. Answer any ten questions from the following.

- i. Show that $\lim_{(x,y)\to(0,0)} xy \frac{x^2-y^2}{x^2+y^2} = 0$
- **ii.** Examine the equality of $f_{xy and} f_{yx}$, where $f_{(x,y)=x^3y+e^{xy^2}}$
- iii. Examine the validity of the hypothesis and conditions of Roll's theorem for $f(x) = x^3 4x$ on [-2,2]?
- iv. Show that $\lim_{x\to 0} \frac{e^{1/x}-1}{e^{1/x}+1}$ does not exist?
- v. Is f(x) continuous at x=1 where
 - F(x) = 2x, when $0 \le x < 1$
 - = 3 when x=1
 - = 4x when $1 < x \le 2$?
- vi. If y = log(1 + x), find nth derivative y_n .
- **vii.** Examine the convergence of improper integral $\int_0^1 \frac{dx}{\sqrt{1-x}}$

viii. Evaluate :
$$\int \sqrt{\frac{x-1}{x+1}} \, dx$$
 ?

- **ix.** Evaluate : $\int_0^{\pi/2} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$
- **x.** Show that $\{x_n\}$, where $x_n=1+\frac{1}{2}+\cdots+\frac{1}{n}$ cannot converge.
- **xi.** Show that the infinite series $\frac{1}{1^2} \frac{1}{2^2} + \frac{1}{3^2} \frac{1}{4^2} + \cdots \dots converges$.
- **xii.** Show that for any real number $x \lim_{n \to \infty} \frac{x^n}{n!} = 0$
- **xiii.** Solve the differential equation: $\frac{dy}{dx} = \frac{y-x}{y+x}$
- **xiv.** If f'(x) + f(x) = 0 and f(0) = 2, find f(x)
- **xv.** Find the differential equation from the relation $x = a \cos t + b \sin t$ where a & b are arbitrary constant.

Group-C

3. Answer any four questions from the following.

i. Discuss the derivability of the following function :

$$f(x) = 2x - 3, 0 \le x \le 2$$
$$= x^2 - 3, 2 \le x \le 4$$

at x=2,4

- ii. State Lagrange's mean value theorem and verify for the function $f(x) = 2x^2 7x + 10$ on [2, 5].
- iii. Show that the series $\sum_{n=1}^{\infty} \frac{3.6.9 \cdots 3n}{7.10.1 \cdots (3n+4)} x^n$, (x > 0) converges for $x \le 1$ and diverges for x > 1.

iv. If $f(x, y) = \frac{x^2 - xy}{x + y}$, when $(x, y) \neq (0, 0)$

= 0 when (x,y)=(0,0)

find $f_x(0,0)$ and $f_y(0,0)$

- **v.** Evaluate $\int_0^{\pi/4} \log(1 + tan\theta) d\theta$
- vi. Solve the diff. equations: -

a)
$$(x+y)(dx - dy) = dx + dy$$

b) y (1+xy) dx + x (1-xy) dy =0

Group-D

4. Answer any three questions from the following.

a. i. Solve :

$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = x^2; \text{ when } x = 0, y = \frac{3}{8} \text{ and } \frac{dy}{dx} = 1$$

ii. Evaluate :

$$\int_2^3 \frac{dx}{\sqrt{(x-1)(5-x)}}$$

b. i. Show that the series $1 - \frac{1}{3.2^2} + \frac{1}{5.3^2} - \frac{1}{7.4^2} \cdots is$ convergent.

ii. Show that $\lim_{n \to \infty} \left[\frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}} \right] = 1$

c. i. Examine for convergence the improper integral $\int_0^{lpha} x^3 e^{-x^2} dx$

ii. Solve:

$$(6x - 5y + 4)dy + (y - 2x - 1) dx = 0$$

d. i. Establish the inequality:

$$x - \frac{x^2}{2} + \frac{x^3}{3(1+x)} < \log(1+x) < x - \frac{x^2}{2} + \frac{x^3}{3}, x > 0$$

ii. Evaluate : $\lim_{x \to 0} \frac{\sqrt{4+x}-2}{x}$ and $\lim_{x \to 1} \frac{x^2-1}{x-1}$

e. i. Assuming the validity of expansion, show that

$$e^x \cos x = 1 + x - \frac{2x^3}{3!} - \frac{2^2x^4}{4!} - \frac{2^3x^5}{5!} + \cdots$$

ii. State and prove Euler's theorem for homogeneous function of two variables.

f. i. Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is $y=2(e^{x}-x+1)$

ii. Evaluate :

$$\int_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx$$

10 X 3 = 30