SP-II/Mathematics/201/C-1B/19

B.Sc. 2nd Semester (Programme) Examination, 2019

MATHEMATICS

(Real Analysis)

Paper: 201/C-1B Course ID: 22118

Time: 2 Hours Full Marks: 40

The figures in the right hand side margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

1. Answer any five questions:

 $2 \times 5 = 10$

- (a) Define limit point of a set. Give an example.
- (b) Show that $N \times N$ is countable, where N is the set of natural numbers.
- (c) Show that $S = \left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots\right\}$ is not a closed set.
- (d) Show that $\lim_{n\to\infty} n^{1/n} = 1$.
- (e) Show that the sequence $\left\{\frac{n+3}{2n+1}\right\}$ is bounded.
- (f) Give an example of a bounded sequence which is not convergent.
- (g) Show that the series $\frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \dots + \frac{n}{n+1} + \dots$ does not converge.
- (h) Examine the following sets are compact or not:
 - (i) (1, 2] (ii) [2, 3].

2. Answer any four questions:

5×4=20

- (a) (i) Show that a point α is a limit point of a set S if and only if every neighbourhood of α contains infinitely many points of S.
 - (ii) Show that every point of a finite set is an isolated point.

3+2=5

- (b) (i) State Bolzano Weistrass theorem and verify it for the set $S = \{\frac{n}{n+1} : n \in N\}$.
 - (ii) Show that union of two closed sets is closed.

3+2=5

- (c) (i) Show that a convergent sequence is bounded.
 - (ii) State Cauchy's general principle of convergence of a real sequence.

3+2=5

- (d) (i) Define compact set. Give example.
 - (ii) Show that every finite subset of \mathbb{R} is compact.

2+3=5

22118/13144 Please Turn Over

SP-II/Mathematics/201/C-1B/19

(2)

- (e) If $\lim_{n\to\infty} x_n = l$ and $\lim_{n\to\infty} y_n = m$, then show that $\lim_{n\to\infty} (x_n y_n) = l m$.
- (f) State Cauchy's root test for a series of positive terms and also test the convergence of the series $\frac{1}{2} + \frac{1}{3^2} + \frac{1}{4^3} + \dots + \frac{1}{(n+1)^n} + \dots$

3. Answer *any one* question:

 $10 \times 1 = 10$

4+3+3=10

- (a) (i) Show that the set of rational numbers is countable.
 - (ii) Find the upper and lower limits of the sequence $\left\{ (-1)^n + \sin \frac{n\pi}{4} \right\}_n$.
 - (iii) Show that $1 \frac{1}{2!} + \frac{1}{4!} \frac{1}{6!} + \cdots$ is convergent.
- (b) (i) Show that the sequence $\left\{\frac{1}{n}\right\}$ is a Cauchy sequence.
 - (ii) Test the convergence of the series $\frac{1}{1\cdot 2^2} + \frac{1}{2\cdot 3^2} + \frac{1}{3\cdot 4^2} + \cdots$.
 - (iii) If S be a bounded set and T be a set such that $T = \{-x \mid x \in S\}$. Show that T is also bounded and $\sup T = -\inf S$ and $\inf T = -\sup S$. 2+3+5=10