Subject: Mathematics

Course Code: Math-205C(IA)

Course Title: Integral Transforms & Computational Methods for PDEs

Full Marks: 32

Time: 2 Hours

The figures in the margin indicate full marks

Symbols and notations have their usual meaning

Group - A

Answer any two of the following questions:

- 1. Using Fourier transform, solve $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$, $0 < x < \pi$, $0 < y < y_0$ under the boundary conditions u(0, y) = 0, $u(\pi, y) = 1$, $u_y(x, 0) = u(x, y_0) = 0$.
- 2. a) Find $L^{-1}\left\{\frac{w}{s^2+w^2}\right\}$, s > 0 using complex inversion formula.
 - b) Use Laplace transform technique to solve the ODE:

$$\frac{d^2x}{dt^2} + 6\frac{dx}{dt} + 9x = \sin t, \ t \ge 0$$

subject to the conditions x(0) = x'(0) = 0.

3. (a) Derive transformation and inverse transformation formula for Hankel transformation.

(b) Find the Hankel transformation of $f(x) = \begin{cases} a^2 - x^2, 0 < x < a, n = 0 \\ 0, x > a, n = 0 \end{cases}$ (2+2)+4=8

Group - B

Answer any two of the following questions:

4. (a) Define the following terms: (i) Well-posed problems and classical solutions of PDE, (ii) Computational grid, (iii) Stencil of a scheme.

(b) Construct the FTCS-scheme (forward in time and central in space) for the one-

dimensional transport equation: $u_t + a u_x = bu_{xx}$ where a and b are constants.

(2+1+1)+4=8

 $8 \times 2 = 16$

Course ID: 22165

$8 \times 2 = 16$

4+4=8

- 5. Use the Crank-Nicolson Method to calculate a numerical solution of the equation $u_t = u_{xx}$, 0 < x < 1, t > 0, where (1) u = 0, x = 0 and $1, t \ge 0$, (*ii*) u = 2x, $0 \le x \le \frac{1}{2}$, t = 0, (*iii*) u = 2(1 - x), $\frac{1}{2} \le x \le 1$, t = 0 (Take $\Delta x = \frac{1}{10}$, $\Delta y = \frac{1}{100}$). 8
- 6. A tightly stretched string with fixed end points x = 0 and x = 1.0 is at rest in its equilibrium position. At t = 0 each point of the string is given a velocity 20x(1 x). Find the displacement of the string at x = 0.6 and t = 0.2 by finite difference method, taking $\Delta x = 0.2$ and $\Delta t = 0.1$. Consider the normal form

$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$$

for vibration of string.

8
