Subject: Mathematics

Course ID: 22165

Course Code: Math-205C(IA)

Course Title: Integral Transforms \& Computational Methods for PDEs

Full Marks: 32
Time: 2 Hours

The figures in the margin indicate full marks

Symbols and notations have their usual meaning

Group - A

Answer any two of the following questions:

1. Using Fourier transform, solve $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0,0<x<\pi, 0<y<y_{0}$ under the boundary conditions $u(0, y)=0, u(\pi, y)=1, u_{y}(x, 0)=u\left(x, y_{0}\right)=0$.
2. a) Find $L^{-1}\left\{\frac{w}{s^{2}+w^{2}}\right\}, s>0$ using complex inversion formula.
b) Use Laplace transform technique to solve the ODE:

$$
\frac{d^{2} x}{d t^{2}}+6 \frac{d x}{d t}+9 x=\sin t, \quad t \geq 0
$$

subject to the conditions $x(0)=x^{\prime}(0)=0$.
$4+4=8$
3. (a) Derive transformation and inverse transformation formula for Hankel transformation.
(b) Find the Hankel transformation of $f(x)=\left\{\begin{array}{c}a^{2}-x^{2}, 0<x<a, n=0 \\ 0, \quad x>a, n=0\end{array}\right\} \quad(2+2)+4=8$

Group - B

Answer any two of the following questions:

$$
8 \times 2=16
$$

4. (a) Define the following terms: (i) Well-posed problems and classical solutions of PDE, (ii) Computational grid, (iii) Stencil of a scheme.
(b) Construct the FTCS-scheme (forward in time and central in space) for the onedimensional transport equation: $u_{t}+a u_{x}=b u_{x x}$ where a and b are constants.

$$
(2+1+1)+4=8
$$

5. Use the Crank-Nicolson Method to calculate a numerical solution of the equation $u_{t}=u_{x x}, 0<x<1, t>0$, where (1) $u=0, x=0$ and $1, t \geq 0,(i i) u=2 x, 0 \leq$ $x \leq \frac{1}{2}, t=0$, (iii) $u=2(1-x), \frac{1}{2} \leq x \leq 1, t=0\left(\right.$ Take $\left.\Delta x=\frac{1}{10}, \Delta y=\frac{1}{100}\right) . \quad 8$
6. A tightly stretched string with fixed end points $x=0$ and $x=1.0$ is at rest in its equilibrium position. At $t=0$ each point of the string is given a velocity $20 x(1-x)$. Find the displacement of the string at $x=0.6$ and $t=0.2$ by finite difference method, taking $\Delta x=0.2$ and $\Delta t=0.1$. Consider the normal form

$$
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}
$$

for vibration of string.

