M. SC. SECOND SEMESTER EXAMINATIONS, 2021

Subject: Mathematics

Course Code: Math-203C

Course Title: Calculus of Several Variables & Differential Geometry of Curves and Surfaces

Full Marks: 40

Time: 2 Hours

Course ID: 22153

The figures in the margin indicate the full marks

Notations and symbols have their usual meaning

Group-A (Calculus of Several Variables)

Answer any three of the following questions. $8 \times 3 = 24$

- (i) Suppose f: ℝⁿ → ℝ is a C¹-function on an open ball containing the point c. Then show that for any unit vector u, D_uf(c) exists and D_uf(c) = ∇f(c) · u
 (ii) Let V ⊂ ℝⁿ be an open set and let c ∈ V. When a mapping f: V → ℝ^m is differentiable at c?
- 2. (i) If a function f: ℝⁿ → ℝ^m is differentiable at c ∈ ℝⁿ, then show that f is continuous at c.
 (ii) Consider two functions f: V → ℝ^m and g: V → ℝ^m, where V ⊂ ℝⁿ is an open set. Let f and g be both differentiable at a ∈ V. Show that the function (f ⋅ g): V → ℝ, given by (f ⋅ g)(c) = f(c) ⋅ g(c), ∀ c ∈ V, is also differentiable at a, and

$$(D(f \cdot g))(a) = g(a).(Df)(a) + f(a).(Dg)(a)$$

where "." denotes usual dot product of vectors and "." denotes matrix multiplication. 3+5

3. (i) Define Hessian of a function of f: ℝⁿ → ℝ..
(ii) Suppose f: ℝ² → ℝ is defined on an open set V ⊂ ℝ², such that f_x, f_y and f_{xy} exist at every point of V, and f_{xy} is continuous at some point (a, b) ∈ V. Then show that f_{yx} exist at (a, b) and

$$f_{xy}(a,b) = f_{yx}(a,b).$$

(iii) Give an example of a function $f: \mathbb{R}^2 \to \mathbb{R}$ for which $f_{xy}(a, b) \neq f_{yx}(a, b)$ at some point $(a, b) \in \mathbb{R}^2$.

4. (a) Show that a linear transformation f: ℝⁿ → ℝ^m is differentiable at each point of ℝⁿ.
(b) Let A ⊂ ℝⁿ and p be a limit point of A. Let f: A → ℝⁿ be a function such that lim f(x) = a. Prove that lim f(x) = ||a||.

(c) State Inverse Function theorem for a function f on \mathbb{R}^n .

- 5. (a) Let $g: A \to \mathbb{R}^n$ be a continuously differentiable function, where $A \subset \mathbb{R}^n$ is open, and let $B = \{x \in A : \det g'(x) = 0\}$. Show that g(B) has measure zero.
 - (b) What do you mean by partition of unity?

Group-B (Differential Geometry of Curves and Surfaces)

Answer any two of the following questions.

6. (a) Show that any covariant tensor of second order can be expressed uniquely as the sum of a symmetric and a skew-symmetric tensor of the second order. 5+3 (b) Show that R^l_{ijk} + R^l_{jki} + R^l_{kij} = 0, where R^l_{ijk} is the Riemann curvature tensor of type (1,3).

7. (i) Let $\gamma(t)$ be a regular curve in \mathbb{R}^3 . Then prove that its curvature is given by

$$\kappa = \frac{\|\ddot{\gamma} \times \dot{\gamma}\|}{\|\dot{\gamma}\|^3},$$

where dot denotes derivative with respect to t.

(ii) Find the curvature of the space curve $\gamma(\theta) = (2\cos\theta, 2\sin\theta, 3\theta)$.

(iii) When a space curve is said to be of unit speed. Check whether the following curve is of unit speed or not

$$\gamma(t) = \left(\frac{4}{5}\cos t, 1 - \sin t, -\frac{3}{5}\cos t\right)$$
 3+2+(1+2)

8. (i) Let $\sigma: U \to \mathbb{R}^3$ be a regular surface patch of a surface S and let $P \in S$. Let (u, v) be coordinates of P in U. Show that the tangent space T_PS is a 2-dimensional vector subspace of \mathbb{R}^3 spanned by the vectors σ_u and σ_v .

(ii) Find the first fundamental form of the plane

$$\sigma(u,v) = \vec{a} + u\,\hat{p} + v\,\hat{q},$$

where \vec{a} is a fixed vector and \hat{p} , \hat{q} are two unit vectors perpendicular to each other.

(iii) State Frenet-Serret formulae for a space curve.

6+2

 $8 \times 2 = 16$

3+2+(1+2)

4+2+2