M.SC. SECOND SEMESTER EXAMINATIONS, 2021

Subject:	Mathematics Course ID: 22:	152	
Course Code: Math-202C Course Title: To		ogy	
Full Marks: 40 Time: 2		ours	
The figures in the margin indicate full marks			
Notations and symbols have their usual meaning			
A	Answer <i>any Five</i> of the following questions: (8	8×5)	
1.	(a) Let (X, τ) be a topological space. Prove that a collection \mathfrak{B} of open sets of X constitute a base	ase	
	of X if and only if (i) $\phi \in \mathfrak{B}$, (ii) X is the union of members of \mathfrak{B} (iii) whenever U, $V \in \mathfrak{B}$ and		
	$x \in U \cap V$, there exists a member $B \in \mathfrak{B}$ such that $x \in B \subset U \cap V$.	4	
	(b) Construct two distinct topologies $ au_1$ and $ au_2$ other than discrete and indiscrete topologies or	n	
	$X = \{a, b, c\}$ such that $\tau_1 \subset \tau_2$.	2	
	(c) Let Y be a subspace of the topological space X and $A \subset Y$. Prove that $Cl_Y(A) \subset Cl_X(A)$.	2	
2.	(a) Prove that a topological space X is normal if and only if for each closed set F and each open	n	
	set G in X with $F \subset G$ there exists an open set H such that $F \subset H \subset \overline{H} \subset G$.	4	

- (b) Let (\mathbb{R}, τ) be the usual topological space. Find out two open sets U, V in \mathbb{R} such that
- $1 \in U, [2,5] \subset V \text{ and } U \cap V = \emptyset, \text{ if exist.}$ 2

(c) Prove that every singleton in a T_1 topological space is closed.

- 3. (a) Let S be a set of topological spaces. Define an equivalence relation with justification on S.
 4 (b) Give an example with justification to show that (A ∪ B)° = A° ∪ B° need not be true.
 2 (c) Give an example with justification of a topological space X and a subspace of A such that an open set in A is not open in X.
 2
- 4. (a) Show that a subset A of a topological space X is open if and only if Bd(A) ⊂ X − A where Bd(A) denotes the boundary of A.
 (b) Suppose X is a topological space and A is a subspace of X. Construct with justification a basis

of the subspace A in terms of a basis of X.

2

	(c) Find the exterior and boundary of the set $[2,5) \cup (7,8)$ with respect to the usual topology o	n
	$\mathbb{R}.$	2
5.	(a) Suppose X and Y are two topological spaces, and $f: X \to Y$ is a function. Prove that f is	
	continuous if and only if $f(Cl_X(A)) \subset Cl_Y(f(A))$ for each $A \subset X$.	3
	(b) If A is compact and B is closed in a regular topological space X , then prove that there exist	
	open sets U, V in X such that $A \subset U, B \subset V$ and $U \cap V = \emptyset$.	3
	(c) Give an example with justification to show that a regular space need not be a normal space.	. 2
6.	(a) State and prove Pasting Lemma.	4
	(b) For any two subsets A and B of a topological space X, prove that $Cl(A) \cap Int(B) =$	
	$Cl(A \cap B) \cap Int(B).$	3
	(c) Let $X = \{0,1\}$ and $\tau = \{\emptyset, X, \{1\}\}$. Find out a dense subset of X , if exists.	1
7.	(a) If <i>E</i> is a connected subspace of a topological space <i>X</i> and <i>F</i> is a subset of <i>X</i> such that	
	$E \subset F \subset \overline{E}$, prove that <i>F</i> is also a connected subspace of <i>X</i> .	4
	(b) Let X and Y be two topological spaces, and $f: X \to Y$ be a one-one and onto mapping. Prove	e
	that f is homeomorphism if and only if $f(Int_X(A) = Int_Y(f(A)))$ where A is a subset of X .	4
8.	(a) What is meant by finite intersection property? Prove that each collection of closed sets in a	ł
	compact space X with finite intersection property has a nonempty intersection.	1+3
	(b) Write down one limitation for each of open and continuous functions.	2
	(c) Prove or disprove: the usual topological space in ${\mathbb R}$ is connected.	2
