The figures in the margin indicate full marks

Notations and symbols have their usual meaning.

Answer any five questions from the following eight questions.
 $8 \times 5=40$

1. a) Find all the Mobius transformations which transform the circle $|z| \leq 1$ into the circle $|w| \leq 1$.
b) Find the maximum modulus of the function $f: D \rightarrow \mathbb{C}$ defined by $f(z)=z-4 i$ on D where $D:|z| \leq 1$.
c) Find the cross-ratio of $1,-1, i,-i$.

$$
4+3+1
$$

2. a) If $f: D \rightarrow \mathbb{C}$ where $D:|z|<1$ is analytic on D and if f satisfies the condition $|f(z)|<$ $1, f(0)=0$, then show that $|f(z)|<|z|$ and $\left|f^{\prime}(0)\right|<1$.
b) Suppose that a complex valued function f is analytic in some domain D of the complex plane which contains a segment of the real axis and whose lower half is the reflection of the upper half with respect to the axis. Prove that $f(x)$ is real at each point on the segment if $\overline{f(z)}=f(\bar{z})$.
c) Show that $\lim _{z \rightarrow \infty} f(z)=\lim _{z \rightarrow 0} \frac{1}{f\left(\frac{1}{z}\right)}$.

$$
4+3+1
$$

3. a) Use the definition of contour integration to evaluate $\int \pi e^{\pi \bar{z}} d z$ over the positively oriented contour which is a square with vertices at $0,1,1+i, i$.
b) Suppose f is a continuous function on a domain D such that f has an antiderivative there. Show that the integrals of f around the closed contours lying entirely in D all have value zero.
c) Let $C:|z|=1$ (positively oriented). Evaluate $\int_{C} \frac{d z}{z^{2}+2 z+2}$.

$$
3+3+2
$$

4. a) Use Cauchy integral formula to evaluate $\int_{C} \frac{d z}{\left(z^{2}+9\right)^{2}}$ where C is the negatively oriented circle $|z-2 i|=2$.
b) State and prove Fundamental theorem of algebra.
5. a) Derive the Taylor series representation of $\frac{1}{z-i}$ with respect to $z_{0}=1$.
b) Find the Maclaurin series expansion of $\frac{z^{3}}{z^{4}+16}$.
c) Deduce any two possible Laurent series expansions of $\frac{1}{z^{3}(1-z)}$.
6. a) State Cauchy residue theorem. Using Laurent's theorem and Cauchy residue theorem evaluate $\int \frac{d z}{z^{2} \sinh z}$ over the positively oriented contour $|z|=\pi / 2$.
b) Using residues evaluate $\int \frac{\left(3 z^{3}+2\right) d z}{(z-1)\left(z^{2}+9\right)}$ over the positively oriented contour $|z|=4 . \quad \mathbf{1}+\mathbf{4}+\mathbf{3}$
7. a) State and prove Casorati-Weierstrass theorem.
b) Find the singularities with their nature of the function $\frac{1}{\sin \left(\frac{\pi}{z}\right)}$. $1+4+3$
8. a) State the Argument principle. Find the winding number of the image of the positively oriented contour $|z|=1$ under the transformation $w=\frac{z^{3}+2}{z}$ with respect to the origin.
b) Use residues to evaluate the improper integral $\int_{0}^{\infty} \frac{x^{2} d x}{\left(x^{2}+1\right)\left(x^{2}+4\right)}$.
