B.Sc. 2nd Semester (Honours) Examination, 2020-21 PHYSICS

Course ID: 22412 Course Code: SH/PHS/202/C-4

Course Title: Waves and Optics (T4)

Time: 1 Hour 15 Minutes Full Marks: 25

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Section-I

1. Answer any *five* questions:

 $1\times5=5$

- a. In what respect does holography differ from ordinary photography?
- b. What is the radius of the first zone in a plate of principal focal length 20 cm for light of wavelength 500 nm?
- c. What happens to the interference pattern when the entire arrangement of double slit experiment is dipped in water?
- d. Calculate the coherence length of yellow light with 590 nm in 10⁻¹² second.
- e. What is the physical significance of the quality factor Q of a forced oscillator?
- f. What do you mean by group velocity of a wave group?
- g. Why a grating spectrum is called a normal spectrum?
- h. What happens in the diffraction pattern in single slit experiment when the slit width is gradually increased?

Section-II

1. Answer any *two* questions:

 $5 \times 2 = 10$

- a) i) Show that, in the steady state of a forced oscillator, the time-averaged input power equals
 the time-averaged power dissipated through damping.
 - ii) The kinetic energy of a particle executing simple harmonic oscillation is suddenly increased to $(1 + \gamma^2)$ times of its initial value. Then show that the amplitude of oscillation is increased to $\left[1 + {\gamma v \choose A\omega}^2\right]^{1/2}$ times of its original value A, where ω and v represent the

angular frequency and velocity of that particle respectively.

P.T.O.

3+2

- **b)** i) "A grating having a higher dispersive power than another does not necessarily bear a higher resolving power": Comment on it.
 - ii) An observatory telescope has an objective of diameter 2.54 m. Assuming the mean wavelength of light to be 5.5×10^{-7} cm, estimate the smallest angular separation of two stars that can be resolved by it.
- c) i) Explain how localized fringes can be obtained in a Michelson's interferometer.
 - ii) Why an extended source of light is necessary for observing colours in thin films? 3+2
- d) i) Find the Lissajous figures formed by the superposition of two simple harmonic vibrations at right angles when their periods are in the ratio 2:1 and there is a phase difference of 0 or $\pi/2$.
- ii) The displacement of a particle performing periodic motion is given by $y = 4\cos^2(t/2)\sin 100t$. Show that this motion may be considered to be the result of superposition of three independent harmonic motions.

Section-III

3. Answer any *one* question:

 $10 \times 1 = 10$

- a) i) A uniform string of length l is stretched between its fixed ends x = 0 and x = l. Find an expression for the transverse displacement y(x, t) of the string when it is struck at the centre so that the velocity varies linearly from 0 at the ends to v_0 at the centre.
 - ii) Determine the possible harmonics in the longitudinal vibration of a rod clamped in the middle.
 - iii) Establish the condition for missing order spectra in double slit diffraction pattern.

4+3+3

- **b) i)** Explain how the refractive index of a liquid can be determined with the help of Newton's ring. What happens in Newton's ring experiment if the glass plate is replaced by a plane mirror?
 - **ii**) A plane transmission grating (say grating 1) has 2000 rulings in 4 cm and another (say grating 2) has 1000 rulings in 2 cm. Hence, compare the resolving power of two gratings.
 - iii) In a Lloyd's mirror experiment, find out the visibility of the fringes if the mirror reflectsonly 80% of the light incident on it.
