
  SH-II/Mathematics/203/GE-2/19 

22114/13143 Please Turn Over 

B.Sc. 2nd Semester (Honours) Examination, 2019 

MATHEMATICS 

(Real Analysis) 

Paper : 203/GE-2 
  Course ID :  22114 

  Time:  2 Hours  Full Marks:  40 

The figures in the right hand side margin indicate full marks. 
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 1. Answer any five questions: 2×5=10 

   (a) If ܵ = ቄହ௡ ∶ ݊ ∈ ܰቅ, using Archimedian property show that ݂݊ܫ	ܵ = 0. 

   (b) Show that the set of all natural numbers is not bounded above. 

   (c) Using Cauchy’s general principle of convergence, show that the sequence ቄ ௡௡ାଵቅ௡ is 

convergent. 

   (d) Show that the sequence ሼ2௡ ∶ ݊ ∈ ܰሽ is not a Cauchy sequence. 

   (e) Find the derived set of the set ቄ1 + ଵଶ௡ ∶ ݊ ∈ ቅ. 
   (f) Define open set. Give example. 

   (g) Show that the series ∑ ଶ√௡௡మାଵ converges. 

   (h) If a series ∑ݑ௡ converges, then show that  lim௡→ஶ	ݑ௡ = 0. 

 2. Answer any four questions:  5×4=20 

   (a) If lim௡→ஶ	ݔ௡ = ݈ and lim௡→ஶ	ݕ௡ = ݉, then show that lim௡→ஶ	ሺݔ௡ݕ௡ሻ = ݈݉. 

   (b)  (i) Show that the derived set of any set in  (the set of real numbers) is closed. 

     (ii) Find the derived set of the set S, where ܵ = ቄ ଵଷ೘ + ଵଷ೙ ∶ ݉, ݊ ∈ ܰቅ. 3+2=5 

   (c)  (i) Let ሼݑ௡ሽ௡ be a null sequence and ሼݒ௡ሽ௡ be bounded. Then show that ሼݑ௡ݒ௡ሽ௡ is also a 

null sequence. 

     (ii) Apply Sandwith theorem to show that the sequence ሼݑ௡ሽ௡, where 

௡ݑ       = ଵ√௡మାଵ + ଵ√௡మାଶ +⋯+ ଵ√௡మା௡ converges to 1. 3+2=5 

   (d)  (i) If ∑ݑ௡ be a convergent series of positive terms, prove that ∑ݑ௡ଶ  is also a convergent 

series. 

     (ii) Test the convergence of ෍ ቀ ௡ଶ௡ାଵቁ௡ஶ௡ୀଵ . 3+2=5 
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   (e)  (i) Define alternating series and state Leibnitz’s test for convergence of an alternating 

series. 
     (ii) Show that the series ෌ ሺ−1ሻ௡ିଵ݊ିଵ/ଶஶ௡ୀଵ  is convergent. Examine its absolute 

convergence. 2+3=5 

   (f) Define Cauchy sequence. Show that every Cauchy sequence is convergent. 1+4=5 

 3. Answer any one question:  10×1=10 

   (a)  (i) Show that the set of all odd integers is enumerable. 

     (ii) Show that every compact subset of  is closed. 

     (iii) Show that the following series converges conditionally: 

       
ଷଵ.ଶ − ହଶ.ଷ + ଻ଷ.ସ − ⋯ . 3+4+3=10 

   (b)  (i) If S and T be any two sets, then show that ܵ ∩ ܶ ⊂ ܵ ∩ ܶ but the converse is not true. 

     (ii) Let ሼݑ௡ሽ be a convergent sequence of real numbers converging to u. Then show that the 
sequence ሼ|ݑ௡|ሽ converges to  |ݑ|. 

     (iii) Test the convergence of the series  
ଵଵ.ଶమ + ଵଶ.ଷమ + ଵଷ.ସమ +⋯ . 3+4+3=10 

__________ 


