SH-II/Mathematics/201/C-3/19

B.Sc. 2nd Semester (Honours) Examination, 2019

MATHEMATICS

(Real Analysis)

Paper : 201/C-3 Course ID : 22111

Time: 2 Hours Full Marks: 40

The figures in the right hand side margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

1. Answer *any five* questions:

 $2 \times 5 = 10$

- (a) Is the least upper bound axiom true for the set of rational numbers? Justify it.
- (b) Give example of two uncountable sets A and B in \mathbb{R} (the set of real numbers) such that $A \cap B$ is countable.
- (c) Find the derived set of the set $S = \left\{ \frac{1}{3^n} + \frac{1}{4^m} : m, n \in \mathbb{N} \right\}$.
- (d) Find the upper and lower limit of the sequence $\{(-1)^n + \sin \frac{n\pi}{4}\}$.
- (e) Prove that a convergent sequence is bounded, but the convers may not be true. 1+1=2
- (f) Examine if the set $S = \{x \in \mathbb{R} : \sin x = 0\}$ is closed in \mathbb{R} .
- (g) Give an example to show that arbitrary union of compact sets may not be compact.
- (h) Examine the convergence of the series $\frac{1}{1+a^2} \frac{1}{2+a^2} + \frac{1}{3+a^2} \cdots$, a is real number.

2. Answer *any four* questions:

 $5 \times 4 = 20$

- (a) (i) Show that the derived set of a bounded set is bounded.
 - (ii) If y > 0 show that there exists $n \in \mathbb{N}$ (the set of natural numbers) such that $\frac{1}{2^n} < y$. 3+2=5
- (b) (i) Let E be a bounded set of real numbers and M be the supremum of E. If $M \notin E$, show that M is a limit point of E.
 - (ii) Let $\{a_n\}$ be a sequence of positive real numbers with $\overline{\lim} \ a_n^{1/n} = r$. Prove that $\sum_{n=1}^{\infty} a_n$ is convergent if r < 1 and divergent if r > 1.
- (c) Show that a bounded sequence $\{u_n\}$ is convergent if and only if $\underline{\lim} u_n = \overline{\lim} u_n$.
- (d) (i) Prove that an absolutely convergent series can be expressed as difference of two convergent series of positive real numbers.
 - (ii) Applying Cauchy's general principle of convergence show that the series $1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots + \frac{1}{n!} + \dots \text{ is convergent.}$ 3+2=5

(e) Show that every infinite bounded subset of \mathbb{R} has at least one limit point in \mathbb{R} .

22111/13141 Please Turn Over

SH-II/Mathematics/201/C-3/19

(2)

- (f) (i) Prove that $\lim_{n\to\infty} \frac{(\lfloor n)^{1/n}}{n} = 1/e$.
 - (ii) Prove that the sequence $\left\{ \left(1 + \frac{1}{n}\right)^n \right\}$ is a convergent. 2+3=5

3. Answer *any one* question:

 $10 \times 1 = 10$

- (a) (i) Prove that every bounded sequence of real numbers has a convergent subsequence.
 - (ii) Examine the convergence of the following series:

$$1+\frac{(\alpha+1)}{(\beta+1)}+\frac{(\alpha+1)(2\alpha+1)}{(\beta+1)(2\beta+1)}+\frac{(\alpha+1)(2\alpha+1)(3\alpha+1)}{(\beta+1)(2\beta+1)(3\beta+1)}+\cdots\cdots, \text{ whre } \alpha,\beta \text{ are } +v_e \text{ real numbers}.$$

- (iii) If $\sum a_n$ be a convergent series of positive and non-increasing terms show that $\lim_{n\to\infty} na_n = 0$. 4+3+3=10
- (b) (i) Prove that the derived set of a set is always closed set.
 - (ii) Show that $\lim_{n \to \infty} \frac{1}{n} \{(n+1)(n+2)\cdots(n+n)\}^{1/n} = \frac{4}{e}$.
 - (iii) Prove that \mathbb{R} is not compact.
 - (iv) Give an example of an open cover of the set (0, 5] which does not have a finite subcover. 3+3+2+2=10