## B.Sc. Semester I (General) Examination, 2018-19 MATHEMATICS

Course Id : 12118
Course Code : SPMTH-101C-1A(T)
Course Title : Calculus, Geometry \& Differential Equation

## Time: 2 Hours

Full Marks: 40
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

1. Answer any five questions:
(a) Examine the curve $y-\sin x$ regarding its convexity or concavity to the $x$-axis.
(b) Evaluate: $\lim _{x \rightarrow 0} \frac{\sin x-x}{x^{3}}$
(c) Find the nature of the conic represented by $9 x^{2}-6 x y+y^{2}-14 x-2 y+12=0$
(d) Identify the order and degree of the differential equation $\sqrt{1+\left(y^{\prime}\right)^{2}}=x+1$
(e) Evaluate: $\int_{0}^{\frac{\pi}{2}} \cos ^{4} x d x$
(f) Find the asymptotes of $x^{2}-y^{2}=9$
(g) Find an integrating factor of the differential equation $\left(x^{2}+y^{2}+2 x\right) d x+2 y d y=0$.
(h) Find the centre and radius of the sphere $x^{2}+y^{2}+z^{2}+2 x-4 y-6 z+5=0$.
2. Answer any four questions:
(a) Evaluate: $\lim _{x \rightarrow 0}(\cos x)^{\cot ^{2} x}$
(b) If $y=\frac{\sin ^{-1} x}{\sqrt{1-x^{2}}}|x|<1$, then show that
(i) $\left(1-x^{2}\right) y_{2}-3 x y_{1}-y=0$
(ii) $\left(1-x^{2}\right) y_{n+2}-(2 n+3) x y_{n+1}-(n+1)^{2} y_{n}=0 \quad 2+3=5$
(c) Solve: $\left(4 x^{2} y-6\right) d x+x^{3} d y=0 \quad 5$
(d) Find the surface area generated by revolving the straight line $x=1-y, 0 \leq y \leq 1$ about $y$ axis.
(e) Find the asymptotes of $y^{2}-x^{2}-2 x-2 y-3=0$.
(f) What is rotation of axes? What will be the form of the equation $x^{2}-y^{2}=4$, if the co-ordinate axes are rotated through an angle $\left(-\frac{\pi}{2}\right)$.
3. Answer any one question:
(a) (i) Find the length of the curve $y=\left(\frac{x}{2}\right)^{2 / 3}$ from $x=0$ to $x=2$.
(ii) Find if there is any point of inflexion on the curve $y-3=6(x-2)^{5}$
(iii) Solve: $\left(x^{3}+3 x y^{2}\right) d x+\left(y^{3}+3 x^{2} y\right) d y=0 \quad 4+3+3=10$
(b) (i) Find $a$ and $b$ such that $\lim _{x \rightarrow 0} \frac{x(1+a \cos x)-b \sin x}{x^{3}}=1$.
(ii) Find the equation of the right circular cylinder whose radius is 1 and $x$-axis is the axis.
