B.SC. FIRST SEMESTER (PROGRAMME) EXAMINATIONS, 2021

Subject: Mathematics
Course ID: 12118

Course Code: SP/MTH/101/C-1A

Course Title: Calculus, Geometry \& Differential Equations

Full Marks: 40
Time: 2 Hours

The figures in the margin indicate full marks

Notations and symbols have their usual meaning

1. Answer any five of the following questions:
a) Find the envelop of the family of circles $x^{2}+y^{2}-2 a x \cos \alpha-2 a y \sin \alpha=c^{2}$, where α is the parameter, and interpret the result.
b) Find the range of values of x for which the curve $y=x^{4}-6 x^{3}+12 x^{2}+5 x+7$ is concave upwards or downwards. Also determine the point of inflection.
c) Find the equation of a right circular cylinder of radius 2 whose axis passes through $(1,2,3)$ and has direction cosines proportional to $(2,-3,6)$.
d) Find the nature of the conic $\frac{8}{r}=4-5 \cos \theta$.
e) Solve $x \cos \frac{y}{x}(y d x+x d y)=y \sin \frac{y}{x}(x d y-y d x)$.
f) If $\lim _{x \rightarrow a}\left\{\frac{f(x)}{g(x)}\right\}$ exists finitely and $\lim _{x \rightarrow a} g(x)=0$, then prove that $\lim _{x \rightarrow a} f(x)=0$.
g) State Leibnitz's Theorem on successive derivatives.
h) Evaluate: $\int_{0}^{\frac{\pi}{2}} \sin ^{5} x d x$ using reduction formula.
2. Answer any four of the following questions:
a) Solve: $x y-\frac{d y}{d x}=y^{3} e^{-x^{2}}$
b) If $x=A e^{-\frac{k t}{2}} \cos (p t+\epsilon)$, then prove that $\frac{d^{2} x}{d t^{2}}+k \frac{d x}{d t}+n^{2} x=0$, where $n^{2}=p^{2}+\frac{1}{4} k^{2}$.
c) Deduce the necessary and sufficient condition of tangency of a plane to a sphere.
d) Find the asymptotes of $x^{3}+4 x^{2} y+4 x y^{2}+5 x^{2}+5 x y+10 y^{2}-2 y+1=0$.
e) Prove that the two conics $\frac{l_{1}}{r}=1-e_{1} \cos \theta$ and $\frac{l_{2}}{r}=1-e_{2} \cos (\theta-\alpha)$ will touch one another if $l_{1}^{2}\left(1-e_{2}^{2}\right)+l_{2}^{2}\left(1-e_{1}^{2}\right)=2 l_{1} l_{2}\left(1-e_{1} e_{2} \cos \alpha\right)$.
f) i) Determine $\lim _{x \rightarrow a}\left(2-\frac{x}{a}\right)^{\tan \frac{\pi x}{2 a}}$
ii) If $y=\cos \left(m \sin ^{-1} x\right)$ show that $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}+$ $\left(m^{2}-n^{2}\right) y_{n}=0$ and hence find $y_{n}(0)$.
3. Answer any one of the following questions:
a) Is integrating factor of a differential equation unique? Justify your answer. Show that $e^{x^{2}}$ is an integrating factor of $\left(x^{2}+x y^{4}\right) d x+2 y^{3} d y=0$ and hence solve it.
$1+4+1+4$
b) i) Find $\lim _{x \rightarrow 0} \frac{1-\sin x-\cos x+l(1-x)}{x \tan ^{2}(x)}$.
ii) Find the point of inflection of the curve $y=(\log x)^{3}$.
iii) To what point the origin is to be moved so that one can get rid of the first degree terms from the equation $x^{2}+x y+2 y^{2}-7 x-5 y+12=0 . \quad 3+3+4$
