M.Sc. 1st Semester Examination, 2018

 PHYSICS

 PHYSICS
 Course Title : Atomic Spectroscopy \& Nuclear Physics-I
 Paper : PHYS104C
 Course ID : 12454

Time: 2 Hours
Full Marks: 40
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Unit - I

1. Answer any three of the following:
(a) Find the L, S, J quantum numbers corresponding to the ground state electronic configuration of Boron ($\mathrm{z}=5$).
(b) What is Paschen-Back effect? 2
(c) Find the Lande-g-factor for ${ }^{3} \mathrm{D}_{3}$. 2
(d) Calculate the diameter of first Bohr orbit of hydrogen atom. 2
(e) What is the difference between ortho- and para-Heliam? 2
2. Answer any two questions: $4 \times 2=8$
(a) What is the main difference between normal and anomalous Zeeman effect? Write your comment about parallel and perpendicular observation of Zeeman Spectroscopy. $\quad 21 / 2+1 \frac{1}{2}=4$
(b) What do you mean by 'Population Inversion' in a laser system? A laser beam of wavelength 740 nm has coherence time $4 \times 10^{-5} \mathrm{~s}$. Deduce the order of magnitude of its coherence length and spectral half width.
(c) The quantum numbers of two electrons in a two valence electrons atom are
$n_{1}=6, l_{1}=3, s_{1}=\frac{1}{2}$
$n_{2}=5, l_{2}=1, s_{2}=\frac{1}{2}$
(i) Assuming L-S coupling, find the possible values of L and hence of J .
(ii) Assuming $\mathrm{j}-\mathrm{j}$ coupling, find the possible value of J .
(d) Establish the relation

$$
(\sigma . \vec{A})(\sigma \cdot \vec{B})=\vec{A} \cdot \vec{B}+i \sigma(\vec{A} \times \vec{B})
$$

Where σ being the Pauli matrice and \vec{A} and \vec{B} are arbitrary operators.
3. Answer any one of the following: $6 \times 1=6$
(a) What do you mean by fine structure of hydrogen atom? Find out the relativistic correction to energy levels of hydrogen atom.
(b) What is Auger effect? A beam of electron enters a uniform magnetic field of 1.2 Tesla. Calculate, the energy difference between electrons whose spins are parallel and antiparallel to the field.

Unit - II

1. Answer any three of the following:
(a) Find the binding energy for ${ }^{2} \mathrm{He}_{4}, M\left({ }_{2} \mathrm{He}^{4}\right)=4.0026 u$
(b) Why are the most stable nuclei found in the region near $\mathrm{A}=60$?
(c) Define iso-spin quantum number.
(d) What are the significations of magic numbers?
(e) The neutron although a neutral particle possesses a negative magnetic moment. Why?
2. Answer any two of the following: $4 \times 2=8$
(a) Calculate binding energies of the following isobars and their binding energy per nucleon:
${ }^{28} \mathrm{Ni}_{64}=63.9280 ;{ }^{29} \mathrm{Cu}_{64}=63.9298 ;{ }^{30} \mathrm{Zn}_{64}=63.9292$. Assume, $\mathrm{M}_{\mathrm{n}}=1.009 \mathrm{amu}$ and $M_{p}=1.008 \mathrm{amu}$.

4
(b) Why are nuclei with all the combinations of Z and N for a given A value do not exists in nature?
(c) Find out the total scattering cross section for a low energy $n-p$ (s-wave) scattering assuming a square well potential.
(d) Explain with suitable diagram, the principle of operation of a Tandem accelerator.
3. Answer any one of the following:
(a) On the basis of the extreme single particle shell model, what would be the expected ground state spectroscopic configuration of the following nuclei:

$$
{ }^{11} \mathrm{C}_{6},{ }^{45} \mathrm{Sc}_{21},{ }^{61} \mathrm{Ni}_{28},{ }^{73} \mathrm{Ge}_{32},{ }^{109} \mathrm{In}_{49},{ }^{181} \mathrm{Ta}_{73},{ }^{203} \mathrm{Tl}_{81},{ }^{241} \mathrm{Am}_{95} ?
$$

(b) (i) Show that for a spherical charge distribution, the charge form factor is given by, $F(q)=\frac{4 \pi}{q} \int_{0}^{\infty} p(r) \sin (q r) d r$, where the symbols have their usual meaning.
(ii) Show that the deuteron spends more time outside the nuclear range, in comparison to the inside the range.
$3+3=6$

