Please Turn Over

9419-Bnk-I-Phys-104C-F.docx

M.Sc.-I/Physics-104C/18

M.Sc. 1st Semester Examination, 2018

PHYSICS

Course Title : Atomic Spectroscopy & Nuclear Physics-I

Paper : PHYS104C

Course ID : 12454

Time: 2 Hours

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Unit – I

1.	Answer any three of the following:	2×3=6
	(a) Find the L, S, J quantum numbers corresponding to the ground state electronic cont	iguration
	of Boron $(z = 5)$.	2
	(b) What is Paschen-Back effect?	2
	(c) Find the Lande-g-factor for ${}^{3}D_{3}$.	2
	(d) Calculate the diameter of first Bohr orbit of hydrogen atom.	2
	(e) What is the difference between ortho- and para-Heliam?	2

2. Answer *any two* questions:

- (a) What is the main difference between normal and anomalous Zeeman effect? Write your comment about parallel and perpendicular observation of Zeeman Spectroscopy. $2\frac{1}{2}+1\frac{1}{2}=4$
- (b) What do you mean by 'Population Inversion' in a laser system? A laser beam of wavelength 740 nm has coherence time 4×10^{-5} s. Deduce the order of magnitude of its coherence length 2+2=4and spectral half width.
- (c) The quantum numbers of two electrons in a two valence electrons atom are

$$n_1 = 6, \ l_1 = 3, s_1 = \frac{1}{2}$$

 $n_2 = 5, \ l_2 = 1, \ s_2 = \frac{1}{2}$

- (i) Assuming L–S coupling, find the possible values of L and hence of J.
- (ii) Assuming j–j coupling, find the possible value of J. 2+2=4

12454/9419

Full Marks: 40

 $4 \times 2 = 8$

M.Sc.-I/Physics-104C/18

(d) Establish the relation

$$(\sigma.\vec{A})(\sigma.\vec{B}) = \vec{A}.\vec{B} + i\sigma(\vec{A}\times\vec{B})$$

Where σ being the Pauli matrice and \vec{A} and \vec{B} are arbitrary operators.

- 3. Answer *any one* of the following:
 - (a) What do you mean by fine structure of hydrogen atom? Find out the relativistic correction to energy levels of hydrogen atom. 1+5=6
 - (b) What is Auger effect? A beam of electron enters a uniform magnetic field of 1.2 Tesla. Calculate, the energy difference between electrons whose spins are parallel and antiparallel to the field. 2+4=6

- 1. Answer *any three* of the following:
 - (a) Find the binding energy for ${}^{2}\text{He}_{4}$, $M({}_{2}\text{He}^{4}) = 4.0026 u$
 - (b) Why are the most stable nuclei found in the region near A = 60?
 - (c) Define iso-spin quantum number.
 - (d) What are the significations of magic numbers?
 - (e) The neutron although a neutral particle possesses a negative magnetic moment. Why?
- 2. Answer *any two* of the following:
 - (a) Calculate binding energies of the following isobars and their binding energy per nucleon: $^{28}\text{Ni}_{64}$ = 63·9280; $^{29}\text{Cu}_{64}$ = 63·9298; $^{30}\text{Zn}_{64}$ = 63·9292. Assume, M_n = 1·009 amu and $M_{p} = 1.008$ amu. 4
 - (b) Why are nuclei with all the combinations of Z and N for a given A value do not exists in nature? 4
 - (c) Find out the total scattering cross section for a low energy n p (s-wave) scattering assuming a square well potential. 4
 - (d) Explain with suitable diagram, the principle of operation of a Tandem accelerator. 4

3. Answer *any one* of the following:

(a) On the basis of the extreme single particle shell model, what would be the expected ground state spectroscopic configuration of the following nuclei:

$${}^{11}C_6, {}^{45}Sc_{21}, {}^{61}Ni_{28}, {}^{73}Ge_{32}, {}^{109}In_{49}, {}^{181}Ta_{73}, {}^{203}Tl_{81}, {}^{241}Am_{95}?$$

6×1=6

2×3=6

4

 $4 \times 2 = 8$

6×1=6

(b) (i) Show that for a spherical charge distribution, the charge form factor is given by,

(3)

 $F(q) = \frac{4\pi}{q} \int_0^\infty p(r) \sin(qr) dr$, where the symbols have their usual meaning.

(ii) Show that the deuteron spends more time outside the nuclear range, in comparison to the inside the range.3+3=6