Please Turn Over

9418-Bnk-I-Phys-103C-F.docx

M.Sc.-I/Physics-103C/18

M.Sc. 1st Semester Examination, 2018

PHYSICS

Course Title : Solid State Physics-I & Electronics-I

Paper : PHYS103C

Course ID : 12453

The figures in the right hand side margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Unit – I

1.	Answer any three questions:2×3=6		
	(a) Obtain the Miller indices of a plane which intercepts at <i>a</i>, <i>b</i>/2, 3<i>c</i> in a simple cubic unit cell.Draw a heat diagram showing the plane.		
	(b) Copper has fcc structure and its atomic radius is 0.1278 cm. Calculate the density. Take the atomic weight of copper as 63.5.		
	(c) What is exchange field in ferromagnetic material? Write down Curie-Weiss law and graphically plot it.		
	(d) Draw the Acoustical branch and optical branch within 1st Brillouin Zone for a lattice with two different kind of atoms.		
	(e) What is Phonon? Show that number of Phonons in a solid is not conserved. 2		
2.	Answer <i>any two</i> questions: 4×2		
	 (a) Discuss Langevin's classical theory for a diamagnetic substance and hence deduce the diamagnetic susceptibility under spherically symmetric charge distribution. 2+2=4 		
	(b) Show that the dissociation energy of a NaCl molecule is 4.5 eV. 4		
	(c) Calculate packing factor of Dimond cubic structure. Compare the packing factor of Dimond structure and FCC structure.		
	(d) Derive the dispersion relation for the lattice vibration of monoatomic structure under harmonic approximation.		

12453/9418

Time: 2 Hours

Full Marks: 40

M.Sc.-I/Physics-103C/18

(2)

3.	Answer any one question:			
	(a)	(i) Why does simple grating can not be used for X-ray diffraction?		
		(ii) Derive Lave equations. Hence find Bragg's law for crystal diffraction.	2+4=6	
	(b) Considering the quantization of magnetic moments for a paramagnetic substace			
	(i) Derive the expression of the net magnetization along the direction of the applied field			

(ii) Derive the expression for the effective Bohr magnetor under normal magnetic flux and ordinary temperature.3+3=6

Unit – II

1.	Answer any three of the following:	2×3=6
	(a) Why fourth quadrant in $I - V$ characteristics used for operation of a solar cell?	2
	(b) State the law of mass action.	2
	(c) Write down the equation for temperature dependence on carrier concentrations.	2
	(d) Prove the Einstein relation for either carrier type at equilibrium.	2
	(e) What are the advantages of active filters over passive filters?	2
2.	Answer any two questions:	4×2=8
	(a) State the Nyquist criterion for stability. Prove that the Nyquist plot is a circle.	4
	(b) Sketch the idealized characteristics for the following filter types:	
	(i) Low pass	
	(ii) High pass	
	(iii) Band pass	
	(iv) Band-rejection	4
	(c) Set up a 4-bit counter type ADC and discuss the performance of it.	4
	(d) For a certain D-MOSFET, $I_{DSS} = 10$ mA, and $V_{GS(off)} = -8V$	
	(i) Is this an <i>n</i> -channel or a <i>p</i> -channel?	
	(ii) Calculate, I_D at $V_{GS} = -3V$	
	(iii) Calculate, I_D at $V_{GS} = +3V$	1+1½+1½=4

- **3.** Answer *any one* of the following: 6×1=6
 - (a) Describe the five steps involved in fabricating a monolithic IC, assuming you already have a substrate (must give figure for each step).
 - (b) Describe epitaxial growth and photo etching processes. Write the four advantages of ICs. 6