Please Turn Over

9417-Bnk-I-Phys-102C-F.docx

M.Sc.-I/Physics-102C/18

M.Sc. 1st Semester Examination, 2018

PHYSICS

Course Title : Quantum Mechanics-I & Classical Electrodynamics-I

Paper : PHYS 102C

Course ID: 12452

Time: 2 Hours

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Unit – I

- **1.** Answer *any three* of the following: 2×3=6 (a) Two kets are given by $|\alpha \rangle = i|1 \rangle - 2|2 \rangle - i|3 \rangle$, $|\beta \ge = i|1 \rangle + 2|3 \rangle$, where 2 $|1 \rangle$, $|2 \rangle$, $|3 \rangle$ are orthonormal basis. Find $< \beta |$ and $< \alpha | \beta >$. (b) Show that $[\hat{p}_x, f(x)] = i\hbar f'(x)$. 2 (c) (i) Show that the operator $T = \begin{pmatrix} 1 & 1-i \\ 1+i & 0 \end{pmatrix}$ is Hermitian. 1+1=2(ii) What do you mean by stationary states? 2 (d) Show that eigenvalues of all Hermitian operators are real. (e) Show that the operator $\frac{\partial}{\partial x}$ is not a Hermitian operator. 2 Answer *any two* questions: $4 \times 2 = 8$ (a) A particle is subject to a potential given by: $V(x) = -\alpha \, \delta(x)(\alpha > 0)$, here $\delta(x)$ is the Dirac delta function. Find the possible energy of the particle in its bound state. 4
 - (b) Find the uncertainty $\Delta x = [\langle x^2 \rangle \langle x \rangle^2]^{\frac{1}{2}}$ in the *n*th eigenstate of a linear harmonic oscillator. 4
 - (c) What is a coherent state? Show that the position-momentum uncertainty product in a coherent state is same as that of the ground state of a I-D harmonic oscillator. 1+3=4
 - (d) Show that if \hat{A} and \hat{B} represent two observables such that the commutator $[\hat{A}, \hat{B}] = 0$, then they must have a simultaneous eigenstate. 4

12452/9417

2.

Full Marks: 40

M.Sc.-I/Physics-102C/18

- 3. Answer *any one* question:
 - (a) Imagine a system in which there are just two linearly independent states:

$$|1 > \begin{pmatrix} 1 \\ 0 \end{pmatrix}, |2 > \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

suppose the Hamiltonian of the system has the specific form

$$H = \begin{pmatrix} h & g \\ g & h \end{pmatrix}$$
, where g and h are real constants.

- (i) Find the normalized eigenvectors and eigenvalues of H
- (ii) Suppose that the initial state $|\Psi(0) > |I >$. Expand $|\Psi(0) >$ as a linear combination of eigenvectors of *H*

(iii) Show that
$$|\Psi(t)\rangle = e^{-i\hbar t/\hbar} \begin{pmatrix} \cos(gt/\hbar) \\ -i\sin(gt/\hbar) \end{pmatrix}$$
 $3+1+2=6$

- (b) In case of a linear harmonic oscillator, let $|n\rangle$ represent the set of orthonormal eigenkets of H.
 - (i) Evaluate $< 4|x^2|6 >$
 - (ii) Evaluate the matrix elements $\langle m|a|n \rangle$ and write the matrix representing the annihilation operator 'a'. 3+3=6

Unit – II

1.	Answer any three questions:	2×3=6
	(a) State the physical significance of Coulomb condition.	2
	(b) What is the physical significance of $\vec{\nabla} \cdot \vec{B} = 0$?	2
	(c) Write down the Lorentz-Gauge condition.	2
	(d) What do you mean by retarded potential?	2
	(e) What is Maxwell's stress tensor?	2
2.	Answer any two questions:	4×2=8
	(a) Show that retarded potential satisfies Lorentz-Gauge condition.	4
	(b) Rewrite Maxwell's Equation using potential formalism of electrodynamics.	4

M.Sc.-I/Physics-102C/18

4		
(c) Consider an infinite parallel plate capacitor with the lower plate (at $z = -\frac{a}{2}$) carrying surface		
charge density $-\sigma$ and the upper plate (at $z = +\frac{d}{2}$) carrying surface charge density $+\sigma$.		
Determine all the nine elements of the stress tensor, in the region between the plates.	4	
(d) Discuss oscillating electric dipole radiation.	4	
Answer <i>any one</i> question: 6×1=6		
(a) Derive the Poisson's equation for the vector potential.	6	
(b) Discuss about the power radiated by a moving point charge.	6	

......

3.

(3)