M.Sc. 1st Semester Examination, 2018 PHYSICS

Course Title : Mathematical Methods-I \& Classical Mechanics
 Paper : PHYS 101C
 Course ID : 12451

Time: 2 Hours
Full Marks: 40
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Unit - I

1. Answer any three of the following:
(a) Write down the values of i^{i} in the form $a+i b$.
(b) Show that, the matrix $B^{\dagger} A B$ is Hermitian or skew-Hermitian according as A is Hermitian or skew-Hermitian.
(c) Identify (with propor mathematical justification) the type of singularity of the function $z^{2} \exp \left(\frac{1}{z}\right)$ at $z=0$.
(d) Show that, the complex variable function $f(z)=|z|^{2}$ is differentiable only at the origin.
(e) Evaluate, $\int_{c} \frac{d z}{\left(z^{2}-1\right)}$, where c is the circle $x^{2}+y^{2}=4$.
2. Answer any two of the following:
(a) Prove that, the trace and the determinant of a finite-dimensional matrix can be written respectively as, the sum and the product of its eigenvalues.
(b) Obtain the Laurent series expansion of the function $\int(z)=\frac{z}{z^{2}-3 z+2}$ valid for each of the following domain defined by
(i) $D_{1}=\{Z \in C ;|Z|<1\}$
(ii) $D_{2}=\{Z \in C ; 1<|Z|<2\}$
(c) Let $y_{1}=5 x_{1}+3 x_{2}+3 x_{3}, y_{2}=3 x_{1}+2 x_{2}-2 x_{3}, \quad y_{3}=2 x_{1}-x_{2}+2 x_{3}$ be a linear transformation from $\left(x_{1}, x_{2}, x_{3}\right)$ to $\left(y_{1}, y_{2}, y_{3}\right)$ and $z_{1}=4 x_{1}+2 x_{3}, z_{2}=x_{2}+4 x_{3}$, $z_{3}=5 x_{3}$ be a linear transformation from $\left(x_{1}, x_{2}, x_{3}\right)$ to $\left(z_{1}, z_{2}, z_{3}\right)$. Find the linear transformation from $\left(z_{1}, z_{2}, z_{3}\right)$ to (y_{1}, y_{2}, y_{3}) by inverting appropriate matrix and matrix multiplication.
(d) Define Holomorphic function. Find all $v(x, y): R^{2} \rightarrow R^{2}$, such that for $z=x+i y$ the function $f(z)=\left(x^{3}-3 x y^{2}\right)+i v(x, y)$ is holomorphic. $1+3=4$
3. Answer any one of the following:
$6 \times 1=6$
(a) Using Cauchy's Residue theorem evaluate any one of the following integral:
(i) $\int_{0}^{\infty} \frac{\log \left(1+x^{2}\right)}{\left(1+x^{2}\right)} d x$
(ii) $\int_{0}^{2 \pi} \frac{d \theta}{a+b \cos \theta}$
(b) (i) Is the system of vectors $X_{1}=(2,2,1)^{T}, X_{2}=(1,3,1)^{T}, X_{3}=(1,2,2)^{T}$ linearly dependent?
(ii) Let $f(z)=\cos x-i \sinh y$, where $z=x+i y$ is a complex variable defined by the whole complex plane. For what value (s) of z does $F^{\prime}(z)$ exist? Let, $F(z)$ be an analytic function. If $F^{\prime}(z)$ is identically zero in a given domain Ω, then show that $F(z)$ is constant in Ω.

Unit - II

1. Answer any three of the following:
(a) Show that energy is conserved in cases where the Hamiltonian is time-independent. 2
(b) Define Poisson bracket. 2
(c) State and explain Liouville's Theorem.
(d) What are Action-angle coordinates? Write its application.
(e) A particle moves with velocity v in an elliptical path in an inverse square force field $U(r)=-k / r$. Show that $v^{2}=(k / m)(2 / r-1 / a)$.
2. Answer any two of the following:
$4 \times 2=8$
(a) From Lagrange's equation of motion deduce Hamilton's equations of motion, using the definitions for the generalized momenta and Hamiltonian.
(b) Derive the expression for integral invariants of Poincaé.
(c) Explain strain and stress tensor. Write down their property.
(d) Consider a pendulum of mass m and length l whose point of support is rapidly oscillating in the vertical direction with $y=-a \cos \omega t$. Obtain the Lagrangian and the equation of motion of the system.
3. Answer any one of the following:
$6 \times 1=6$
(a) Proof the Jacobi's identity. Show that Poisson bracket is invariant under canonical transformations.
$3+3=6$
(b) Consider a particle in three dimension (x, y, z), subject to a central force based potential $V(x, y, z)=V\left(\sqrt{\left(x^{2}+y^{2}+z^{2}\right)^{2}}\right)$

Show that all three components of angular momentum are conserved. The Poisson bracket displays its true power in the search for constants of the motion-Explain.
$4+2=6$

