M.Sc.-I/Physics-101C/18

Full Marks: 40

M.Sc. 1st Semester Examination, 2018

PHYSICS

Course Title : Mathematical Methods-I & Classical Mechanics

Paper : PHYS 101C

Course ID : 12451

Time: 2 Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Unit – I

1. Answer *any three* of the following:

- (a) Write down the values of i^i in the form a + ib.
- (b) Show that, the matrix $B^{\dagger}AB$ is Hermitian or skew–Hermitian according as A is Hermitian or skew–Hermitian. 2
- (c) Identify (with propor mathematical justification) the type of singularity of the function $z^2 \exp\left(\frac{1}{z}\right)$ at z = 0.

(d) Show that, the complex variable function $f(z) = |z|^2$ is differentiable only at the origin. 2

- (e) Evaluate, $\int_c \frac{dz}{(z^2-1)}$, where c is the circle $x^2 + y^2 = 4$.
- 2. Answer *any two* of the following:
 - (a) Prove that, the trace and the determinant of a finite-dimensional matrix can be written respectively as, the sum and the product of its eigenvalues.
 - (b) Obtain the Laurent series expansion of the function $\int (z) = \frac{z}{z^2 3z + 2}$ valid for each of the following domain defined by

(i)
$$D_1 = \{Z \in C; |Z| < 1\}$$

(ii) $D_2 = \{Z \in C; 1 < |Z| < 2\}$ 2+2=4

(c) Let $y_1 = 5x_1 + 3x_2 + 3x_3$, $y_2 = 3x_1 + 2x_2 - 2x_3$, $y_3 = 2x_1 - x_2 + 2x_3$ be a linear transformation from (x_1, x_2, x_3) to (y_1, y_2, y_3) and $z_1 = 4x_1 + 2x_3$, $z_2 = x_2 + 4x_3$, $z_3 = 5x_3$ be a linear transformation from (x_1, x_2, x_3) to (z_1, z_2, z_3) . Find the linear transformation from (z_1, z_2, z_3) to (y_1, y_2, y_3) by inverting appropriate matrix and matrix multiplication.

2×3=6

 $4 \times 2 = 8$

2

(d) Define Holomorphic function. Find all $v(x, y): R^2 \to R^2$, such that for z = x + iy the function $f(z) = (x^3 - 3xy^2) + iv(x, y)$ is holomorphic. 1+3=4

3. Answer *any one* of the following:

(a) Using Cauchy's Residue theorem evaluate any one of the following integral:

(i)
$$\int_{0}^{\infty} \frac{\log(1+x^{2})}{(1+x^{2})} dx$$

(ii)
$$\int_{0}^{2\pi} \frac{d\theta}{a+b\cos\theta}$$
 6

6×1=6

- (b) (i) Is the system of vectors $X_1 = (2, 2, 1)^T, X_2 = (1, 3, 1)^T, X_3 = (1, 2, 2)^T$ linearly dependent?
 - (ii) Let $f(z) = \cos x isinhy$, where z = x + iy is a complex variable defined by the whole complex plane. For what value (s) of z does F'(z) exist? Let, F(z) be an analytic function. If F'(z) is identically zero in a given domain Ω , then show that F(z) is constant in Ω . 2+4=6

Unit – II

1.	Answer <i>any three</i> of the following: 2	×3=6	
	a) Show that energy is conserved in cases where the Hamiltonian is time-independent.	2	
	b) Define Poisson bracket.	2	
	c) State and explain Liouville's Theorem.	2	
	d) What are Action-angle coordinates? Write its application.	2	
	(e) A particle moves with velocity v in an elliptical path in an inverse square force field		
	$U(r) = -k/r$. Show that $v^2 = (k/m) (2/r - 1/a)$.	2	
2.	Answer <i>any two</i> of the following: 4	×2=8	
	(a) From Lagrange's equation of motion deduce Hamilton's equations of motion, using the		
	definitions for the generalized momenta and Hamiltonian.	4	
	b) Derive the expression for integral invariants of Poincaé.	4	
	c) Explain strain and stress tensor. Write down their property.	4	
	(d) Consider a pendulum of mass m and length l whose point of support is rapidly oscillating in		
	the vertical direction with $y = -a \cos \omega t$. Obtain the Lagrangian and the equation of motion of		
	the system.	4	

- 3. Answer *any one* of the following:
 - (a) Proof the Jacobi's identity. Show that Poisson bracket is invariant under canonical transformations.
 3+3=6
 - (b) Consider a particle in three dimension (x, y, z), subject to a central force based potential $V(x, y, z) = V\left(\sqrt{(x^2 + y^2 + z^2)^2}\right)$

Show that all three components of angular momentum are conserved. The Poisson bracket displays its true power in the search for constants of the motion—Explain. 4+2=6