M.Sc. 1st Semester Examination, 2018
 MATHEMATICS

Paper: 102C
Course ID : 12152
Time: 2 Hours
Full Marks: 40
The questions are of equal value.
The figures in the right hand side margin indicate full marks.
Candidates are required to give their answers in their own words

> as far as practicable.

Notations and unexplained symbols have their usual meanings.

Group-A

(Linear Algebra)
Answer any three questions.
$8 \times 3=24$

1. (a) Let V be a finite dimensional vector space and let $\mathbb{B}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a basis for V. Define the dual basis $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ of \mathbb{B}.
Deduce that for each linear functional f on V

$$
f=\sum_{i=1}^{n} f\left(v_{i}\right) f_{i}
$$

and also for each vector $v \in V$

$$
v=\sum_{i=1}^{n} f_{i}(v) v_{i}
$$

(b) Let $\mathbb{B}=\left\{v_{1}, v_{2}, v_{3}\right\}$ be the basis for \mathbb{C}^{3} defined by $v_{1}=(1,0,-1), v_{2}=(1,1,1)$, $v_{3}=(2,2,0)$. Find the dual basis of \mathbb{B}.
$(1+2+2)+3=8$
2. (a) Let V be the vector space of all polynomial functions over the field of real numbers. Let a and b be fixed real numbers $(a<b)$ and let f be the linear functional on V defined by

$$
f(p)=\int_{a}^{b} p(x) d x
$$

If D is the differentiation operator on V, what is $D^{t} f ?\left(D^{t}:=\right.$ Transpose of $\left.D\right)$
(b) Prove that the characteristic polynomial of any diagonalisable linear operator splits.
(c) Find a projection P which projects \mathbb{R}^{2} onto the subspace spanned by $(1,2)$ along the subspace spanned by $(1,-1)$.
$2+3+3=8$
3. (a) State and prove Caley Hamilton Theorem for linear operators.
(b) Find all possible Jordan forms for a 6×6 complex matrix with $x^{2}(1-x)^{2}$ as the minimum polynomial.
4. (a) Let $V=C[0,1]$ and define $\langle f, g\rangle=\int_{0}^{\frac{1}{2}} f(t) g(t) d t$. Is this an inner product on V ?
(b) Prove that an orthogonal set of non-zero vectors on an inner product space is linearly independent.
(c) Let $V=\mathbb{R}_{2}[t]$ be the space of all polynomials of degree at most 2 over \mathbb{R}. Let an inner product on V be defined by $\langle x, y\rangle=\int_{0}^{1} x(t) y(t) d t$. Obtain an orthonormal basis from the basis $\left\{1, t, t^{2}\right\}$ for V over \mathbb{R} using Gram-Schmidt orthonormalization process. $2+2+4=8$
5. (a) Find the matrix representation of the Bilinear form $H: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by
$H\left(\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)\right)=2 a_{1} b_{1}+3 a_{1} b_{2}+4 a_{2} b_{1}-a_{2} b_{2}$
w.r.t. the ordered basis $\mathbb{B}=\{(1,1),(1,-1)\}$.
(b) Define a real quadratic form on \mathbb{R}^{3}.
(c) Find the rank and signature of the real quadratic form $Q\left(x_{1}, x_{2}\right)=x_{1}^{2}-4 x_{1} x_{2}+x_{2}^{2}$.
(d) Investigate whether the following real quadratic form
$Q\left(x_{1}, x_{2}, x_{3}\right)=x_{1}{ }^{2}-2 x_{1} x_{2}+x_{2}^{2}+4 x_{2} x_{3}+5 x_{3}{ }^{2}$
is positive definite or not.
$2+2+2+2=8$

Group-B

(Calculus of Several Variables)
Answer any two questions.
$8 \times 2=16$
6. (a) Let $f(x, y)=\frac{x^{3}-y^{3}}{x^{2}+y^{2}} \quad ; \quad(x, y) \neq(0,0)$

$$
=0 \quad ; \quad(x, y)=(0,0)
$$

Prove that the function is continuous at $(0,0)$.
(b) Show that the function

$$
\begin{array}{rlrl}
f(x, y) & =\frac{x|y|}{\sqrt{x^{2}+y^{2}}} \quad ; \quad & (x, y) \neq(0,0) \\
& =0 \quad ; \quad(x, y)=(0,0)
\end{array}
$$

is not differentiable at $(0,0)$.
(c) Find the gradient vector of $f(x, y, z)=x^{2}-y^{2}+2 z^{2}$ at $(1,1,1)$ where $(x, y, z) \in \mathbb{R}^{3}$.

$$
3+4+1=8
$$

7. (a) If $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $D_{2} f=0$, show that f is independent of the second variable. If $D_{1} f=D_{2} f=0$, show that f is constant.
(b) Find f^{\prime} for $f(x, y)=\int_{a}^{x+y} g$, where $g: \mathbb{R} \rightarrow \mathbb{R}$ is continuous.
(c) Evaluate the directional derivative of the scalar field $f(x, y, z)=x^{2}+2 y^{2}+3 z^{2}$ at $(1,1,0)$ in the direction of $(\hat{\imath}-\hat{\jmath}+2 \hat{k})$.
8. (a) Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is differentiable and has a differentiable inverse $f^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Show that $\left(f^{-1}\right)^{\prime}(a)=\left[f^{\prime}\left(f^{-1}(a)\right)\right]^{-1}$.
(b) Let the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by $f(x, y)=\left(e^{x} \cos y, e^{x} \sin y\right)$. Show that Det $f^{\prime}(x, y) \neq 0$ for all $(x, y) \in \mathbb{R}^{2}$ but f is not one-one.
(c) Define a real analytic function.

$$
3+(2+1)+2=8
$$

