B.Sc. 1st Semester (Honours) Examination, 2019-20
 PHYSICS

Course ID : 12411
Course Code : SHPHS/101/C-1
Course Title : Mathematical Physics-I
Time: 1 Hour 15 Minutes
Full Marks: 25
The figures in the margin indicate full marks.

Section-I

1. Answer any five questions:
(a) If $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$ prove that $\Gamma\left(-\frac{1}{2}\right)=-2 \sqrt{\pi}$.
(b) Find the Fourier Co-efficient as for half wave rectifier.
(c) Find the directional derivative of a scalar function $\varphi=x^{2} y z+4 x z^{2}$ at $(1,-2,-1)$ in the direction $2 \hat{\imath}-\hat{\jmath}-2 \hat{k}$.
(d) Show that $\vec{E}=\frac{\vec{r}}{r^{2}}$ is irrotational.
(e) Write down the expression for the elements of area in cylindrical co-ordinate (ρ, φ, z) system for $\rho=$ constant surface.
(f) Suppose $\vec{\nabla} \cdot \vec{\beta}=0$. Comment about the nature of vector field.
(g) Write the error function.
(h) If \vec{A} is a constant vector, prove that $\vec{\nabla}(\vec{r} \cdot \vec{A})=\vec{A}$.

Section-II

Answer any two questions.
2. Find the Fourier series of the following function $f(x)=\left\{\begin{array}{rll}-m & \text { when } & -\pi<x<0 \\ m & \text { when } & 0<x<\pi\end{array}\right.$. Hence, show that $\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9} \ldots$
3. Using the method of separation variable arrive at the radial equation

$$
\frac{d^{2} R}{d r^{2}}+\frac{2}{r} \frac{d R}{d r}-\frac{l(l+1) R}{r^{2}}=0
$$

from the Laplace equation ($\nabla^{2} \phi=0$) in spherical polar co-ordinate system and show that the general solution of radial equation is of the form

$$
R(r)=A r^{l}+B r^{-(l+1)}, \text { where } A \text { and } B \text { are constant. }
$$

4. (a) Define Γ (gamma) function in integral form.
(b) What is the domain of convergence of this integral form?
(c) Find the relation $\Gamma(n)=(n-1)$!.
5. (a) State Green's theorem in the plane.
(b) Evaluate the integral $\int_{c}\left(x y+y^{2}\right) d x+x^{2} d y$, where c is the closed curve of the region bounded by $y=x$ and $y=x^{2}$ and verify Green's theorem in the plane.
$1+4=5$

Section-III

6. Answer any one question:

Consider the differential equation $9 x(1-x) \frac{d^{2} y}{d x^{2}}-12 \frac{d y}{d x}+4 y=0$
(a) Find singular point and justify regular or irregular singular point.
(b) Find the roots of the indicial equation.
(c) Prove the recurrence relation $J_{n^{(x)}}=\frac{x}{2 n}\left[J_{n-1^{(x)}}+J_{n+1^{(x)}}\right] . \quad 3+3+4=10$
7. (a) Find a unit rector parallel to the $x y$ plane and perpendicular to the vector $4 \hat{\imath}-3 \hat{\jmath}+\hat{k}$.
(b) Prove that, $\vec{A} \times(\vec{B} \times \vec{C})=\vec{B}(\vec{A} \cdot \vec{C})-\vec{C}(\vec{A} \cdot \vec{B})$.
(c) Prove $(\vec{v} \cdot \vec{\nabla}) \vec{v}=\frac{1}{2} \vec{\nabla} v^{2}-\vec{v} \times(\vec{\nabla} \times \vec{v})$.

