17257-B.Sc.-I-Physics-101-C-1-T-1-19-N.docx

Course Code : SHPHS/101/C-1

SH-I/PHS/101/C-1/19

Full Marks: 25

B.Sc. 1st Semester (Honours) Examination, 2019-20 PHYSICS

Course ID : 12411

Course Title : Mathematical Physics-I

Time: 1 Hour 15 Minutes

The figures in the margin indicate full marks.

Section-I

- **1.** Answer *any five* questions:
 - (a) If $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$ prove that $\Gamma\left(-\frac{1}{2}\right) = -2\sqrt{\pi}$.
 - (b) Find the Fourier Co-efficient as for half wave rectifier.
 - (c) Find the directional derivative of a scalar function $\phi = x^2yz + 4xz^2$ at (1, -2, -1) in the direction $2\hat{i} \hat{j} 2\hat{k}$.
 - (d) Show that $\vec{E} = \frac{\vec{r}}{r^2}$ is irrotational.
 - (e) Write down the expression for the elements of area in cylindrical co-ordinate (ρ, ϕ, z) system for ρ = constant surface.
 - (f) Suppose $\vec{\nabla} \cdot \vec{\beta} = 0$. Comment about the nature of vector field.
 - (g) Write the error function.
 - (h) If \vec{A} is a constant vector, prove that $\vec{\nabla}(\vec{r} \cdot \vec{A}) = \vec{A}$.

Section-II

Answer any two questions.

2. Find the Fourier series of the following function $f(x) = \begin{cases} -m & when & -\pi < x < 0 \\ m & when & 0 < x < \pi \end{cases}$. Hence, show that $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} \dots$ 4+1=5

3. Using the method of separation variable arrive at the radial equation

$$\frac{d^2R}{dr^2} + \frac{2}{r}\frac{dR}{dr} - \frac{l(l+1)R}{r^2} = 0$$

from the Laplace equation $(\nabla^2 \phi = 0)$ in spherical polar co-ordinate system and show that the general solution of radial equation is of the form

$$R(r) = Ar^{l} + Br^{-(l+1)}$$
, where A and B are constant.

Please Turn Over

1×5=5

 $5 \times 2 = 10$

SH-I/PHS/101/C-1/19

- (2)
- 4. (a) Define Γ (gamma) function in integral form.
 - (b) What is the domain of convergence of this integral form?
 - (c) Find the relation $\Gamma(n) = (n-1)!$. 2+1+2=5
- 5. (a) State Green's theorem in the plane.
 - (b) Evaluate the integral $\int_c (xy + y^2)dx + x^2dy$, where *c* is the closed curve of the region bounded by y = x and $y = x^2$ and verify Green's theorem in the plane. 1+4=5

 $10 \times 1 = 10$

Section-III

6. Answer *any one* question:

Consider the differential equation $9x(1-x)\frac{d^2y}{dx^2} - 12\frac{dy}{dx} + 4y = 0$

- (a) Find singular point and justify regular or irregular singular point.
- (b) Find the roots of the indicial equation.
- (c) Prove the recurrence relation $J_{n^{(x)}} = \frac{x}{2n} [J_{n-1^{(x)}} + J_{n+1^{(x)}}].$ 3+3+4=10
- 7. (a) Find a unit rector parallel to the xy plane and perpendicular to the vector $4\hat{i} 3\hat{j} + \hat{k}$.
 - (b) Prove that, $\vec{A} \times (\vec{B} \times \vec{C}) = \vec{B}(\vec{A} \cdot \vec{C}) \vec{C}(\vec{A} \cdot \vec{B}).$ (c) Prove $(\vec{v} \cdot \vec{\nabla})\vec{v} = \frac{1}{2}\vec{\nabla}v^2 - \vec{v} \times (\vec{\nabla} \times \vec{v}).$ 2+3+5=10