10445-SHMTH-103GE-1(T)-19-C.docx

SH-I/Mathematics/103GE-1(T)/19

Course Code : SHMTH-103GE-1(T)

B.Sc. Semester I (Honours) Examination, 2018-19 MATHEMATICS

Course Title : Calculus, Geometry & Differential Equation

Time: 2 Hours

Course Id : 12114

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

- 1. Answer *any five* questions:
 - (a) Find the *n*-th derivative of the function $y = \log(x + a)$.
 - (b) Solve: (x + y + 1)dy = dx
 - (c) Evaluate: $\int_0^{\frac{\pi}{2}} \cos^4 x \sin^2 x dx$
 - (d) Find the envelope of the straight line $y = mx + \frac{a}{m}$, m being the variable parameter $(m \neq 0)$.
 - (e) Reduce the differential equation $xy' + y = y^2 \log x$ to a linear form.
 - (f) Find the asymptotes of $x^2 4y^2 = 1$.
 - (g) Find the equation of the sphere through the points (0, 0, 0), (a, 0, 0), (0, b, 0) and (0, 0, c).
 - (h) Transform the equation $x^2 + 2\sqrt{3}xy y^2 2 = 0$ to axes inclined at 30° to the original axes.
- 2. Answer *any four* questions:
 - (a) (i) Find the value of $\lim_{x \to 1} \left(x^{\frac{1}{1-x}} \right)$. (ii) If $\lim_{x \to 0} \frac{\sin 2x + a \sin x}{x^3}$ is finite, find *a* and the value of the limit. 2+(2+1)=5
 - (b) If $I_n = \int \sec^n x dx$, then show that $(n-1)I_n = \tan x \sec^{n-2} x + (n-2)I_{n-2}$ and hence evaluate $\int_0^{\frac{\pi}{4}} \sec^5 x dx$. 3+2=5
 - (c) (i) Find the order and degree of the differential equation $\sqrt{y + \left(\frac{dy}{dx}\right)^2} = 1 + x$.
 - (ii) Find the general solution of the differential equation $\frac{dy}{dx} = (x^2 + 1)(y^2 + 1)$. 2+3=5
 - (d) If $y = \cos(10\cos^{-1} x)$, show that $(1 x^2)y_{12} = 21xy_{11}$. State Leibnitz's theorem. 4+1=5
 - (e) Obtain singular solution of the equation $y = px + p p^2$, where $p = \frac{dy}{dx}$. 5
 - (f) The radius of a right circular cylinder is 2 and its axis is given by $\frac{x}{1} = \frac{y}{-2} = \frac{z}{2}$; Find the equation of the cylinder. 5

10445

Full Marks: 40

 $2 \times 5 = 10$

5×4=20

SH-I/Mathematics/103GE-1(T)/19 (2)

- 3. Answer *any one* question:
 - (a) (i) Find the equation of the cone whose vertex is at (1, 0, -1) and which passes through the circle $x^2 + y^2 + z^2 = 4$, x + y + z = 1.
 - (ii) Find the length of the astroid $x = \cos^3 t$, $y = \sin^3 t$, $0 \le t \le 2\pi$.
 - (iii) Using L'Hospital Rule, evaluate $\lim_{x \to 0} \left(\frac{\tan x}{x}\right)^{1/x^2}$. 4+3+3=10
 - (b) (i) Solve: (1 + xy)ydx + (1 xy)xdy = 0
 - (ii) Show that in any conic the sum of the reciprocals of the segments of a focal chord is constant. 5+5=10

 $10 \times 1 = 10$