B.SC. FIRST SEMESTER (HONOURS) EXAMINATIONS, 2021

Subject: Mathematics
Course ID: 12114

Course Code: SH/MTH/103/GE-1

Course Title: Calculus, Geometry \& Differential Equations

Full Marks: 40
Time: 2 Hours

The figures in the margin indicate full marks

Notations and symbols have their usual meaning

1. Answer any five of the following questions:

$$
(2 \times 5=10)
$$

a) Show that the curve $y=x^{3}$ has a point of inflection at $x=0$.
b) Calculate $\int_{0}^{\frac{\pi}{2}} \sin ^{7} x d x$
c) Find the nature of the conic $9 x^{2}+24 x y+16 y^{2}-126 x+82 y-59=0$.
d) Find the envelope of the family of the straight lines $y=m x+\sqrt{a^{2} m^{2}+b^{2}}$, where m being a parameter.
e) Solve: $\left(x^{2}-y^{2}\right) d y=x y d x$.
f) Find the value of m for which the plane $x+y+z=m$ touches the sphere

$$
x^{2}+y^{2}+z^{2}-2 x-2 y-2 z-6=0
$$

g) Find singular solution of $y=p x+p-p^{2}$.
h) Show that the differential equation $\left(x^{3}-3 x^{2} y+2 x y^{2}\right) d x-\left(x^{3}-2 x^{2} y+y^{2}\right) d y=0$ is exact
2. Answer any four of the following questions:
a) If $I_{m, n}=\int \sin ^{\mathrm{m}} x \cos ^{\mathrm{n}} x d x$ then prove that
$I_{m, n}=\frac{\sin ^{\mathrm{m}+1} x \cos ^{\mathrm{n}-1} x}{m+n}+\frac{\mathrm{n}-1}{\mathrm{~m}+\mathrm{n}} I_{m, n-2}$.
b) A sphere of constant radius $2 a$ passes through origin meets the axes in A, B, C. Show that the locus of a centroid of the tetrahedron $O A B C$ is the sphere $x^{2}+y^{2}+z^{2}=a^{2}$.
c) Find the asymptotes of $x^{3}+y^{3}=3 a x y$.
d) (i) Find the equation of the cone whose vertex is the $(1,2,3)$ and the guiding curve is the circle $x^{2}+y^{2}+z^{2}=4, \quad x+y+z=1$.
(ii) Find the equation of the sphere which passes through the circle $x^{2}+y^{2}+z^{2}=9, \quad 2 x+3 y+4 z=5$ and the point $(1,2,3)$.
e) State Leibnitz Rule for $n^{\text {th }}$ order derivative. If $y=x^{n} \log x$, then prove that $y_{n}=n!\left[\log x+1+\frac{1}{2}+\cdots+\frac{1}{n}\right]$.
f) (i) Prove that the necessary and sufficient condition for the ODE $M d x+N d y=$ 0 to be exact is $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$.
(ii) Solve: $\left(x^{4}+y^{4}\right) d x-x y^{3} d y=0$.
3. Answer any one of the following questions:
$(10 \times 1=10)$
a) (i) Solve $\frac{d y}{d x}+\frac{y}{x} \log y=\frac{y}{x^{2}}(\log y)^{2}$
(ii) Find the length of the perimeter of the asteroid $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$
(iii) Find the nature of the conic $\frac{8}{r}=4-5 \cos \theta$
$4+4+2$
b) (i) Find the area of the segment of the parabola $y=(x-1)(x-4)$ cutoff by the x -axis.
(ii) Solve: $\left(e^{x}+1\right) y d y=\left(y^{2}+1\right) e^{x} d x$, given $y=0$ when $x=0$.
(iii) Examine the concavity and convexity about x -axis for the curve $x=6 t^{2}$, $y=4 t^{3}-3 t$.

