B.SC. FIRST SEMESTER (HONS.) EXAMINATION 2021

Subject: Mathematics
Course ID: 12112

Course Title: Algebra
Course code: SH/MTH/102/C-2
Full Marks: 40
Time: 2 Hours

The figures in the margin indicate full marks

Notations and symbols have their usual meaning.

1. Answer any five questions:
$2 \times 5=10$
(a) Find the product of all the values of $(1+\sqrt{3} i)^{\frac{3}{4}}$.
(b) Prove that $3^{2 n-1}+2^{n+1}$ is divisible by 7 , using principle of mathematical induction.
(c) Show that the set $S=\{(x, y, z): x, y, z \in \mathbb{R}, 2 x+y-z=0\}$ is a subspace of \mathbb{R}^{3}.
(d) Use division algorithm to find integer u and v satisfying $30 u+72 v=12$.
(e) Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be a mapping defined by $f(x)=x^{2}, x \in \mathbb{Z}$ and $g: \mathbb{Z} \rightarrow \mathbb{Z}$ be a mapping defined by $g(x)=2 x, x \in \mathbb{Z}$. Find $f o g$ and $g o f$.
(f) If A be a set of nonzero integers and R be a relation defined on $A \times A$ such that $(a, b) R(c, d)$ iff $a d=b c$, then show that R is an equivalence relation.
(g) If α, β, γ are the roots of the equation $x^{3}+p x^{2}+q x+r=0$, then find the equation whose roots are $(\alpha+\beta) / \gamma,(\beta+\gamma) / \alpha,(\gamma+\alpha) / \beta$.
(h) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be defined by $T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+1, x_{2}+1, x_{3}+1\right)$. Examine whether T is a linear mapping or not.
2. Answer any four questions:
$5 \times 4=20$
(a) (i) Show that if $n \geq 4$, then $n, n+2$ and $n+4$ cannot be all prime.
(ii) Use theory of congruence to find the remainder when $1!+2!+3!++\cdots+100$! is divided by 15 .
(b) (i) Use Cauchy-Schwarz inequality to prove that $(a+b+c+d)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)>16$, where a, b, c, d are positive real numbers, not all equal.
(ii) If x, y, z are positive real numbers and $x+y+z=1$, prove that

$$
8 x y z \leq(1-x)(1-y)(1-z) \leq \frac{8}{27}
$$

(c) Using De Moivre's theorem, prove that $\tan 5 \theta=\frac{5 \tan \theta-10 \tan ^{3} \theta+\tan ^{5} \theta}{1-10 \tan ^{2} \theta+5 \tan ^{4} \theta}$
(d) Solve the equation $x^{4}-6 x^{2}+16 x-15=0$ by Ferrari's method.
(e) Determine the conditions for which the following system of equations has
(I) only one solution (II) no solution (III) many solutions

$$
\begin{gather*}
x+y+z=1 \\
x+2 y-z=b \\
5 x+7 y+a z=b^{2} . \tag{5}
\end{gather*}
$$

(f) Verify Cayley-Hamilton theorem for the matrix $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 2 & 1 \\ 2 & 3 & 2\end{array}\right)$. Hence compute $A^{-1} .5$
3. Answer any one question: $10 \times 1=10$
(a) (i) Apply Descarte's rule of sign to determine the nature of the roots of the equation $x^{4}+2 x^{2}+3 x-1=0$.
(ii) Using principle of mathematical induction, prove that $5^{n}-1$ is divisible by 4 for all positive integer n.
(iii) Find all eigen values of the matrix $A=\left(\begin{array}{lll}1 & -1 & 2 \\ 2 & -2 & 4 \\ 3 & -3 & 6\end{array}\right)$. Hence find eigen vector corresponding to the smallest eigen value.
(b) (i) If α, β, γ are the roots of the equation $x^{3}+q x+r=0(r \neq 0)$, find the equation whose roots are $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}, \frac{\beta}{\gamma}+\frac{\gamma}{\beta}, \frac{\gamma}{\alpha}+\frac{\alpha}{\gamma}$.
(ii) Find $\bmod z$ and $a m p z$ when $z=(1+i)^{7}$.
(iii) Determine the representative matrix of the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by $T(x, y, z)=(3 x+z,-2 x+y,-x+2 y+4 z)$, w.r.t. the standard basis of \mathbb{R}^{3}. $3+4+3=10$

