B.Sc. 1st Semester (Honours) Examination, 2019-20

MATHEMATICS

Course ID : 12111

Course Code : SH/MTH/101/C-1

Course Title : Calculus, Geometry and Differential Equations

Time 2 Hours
Full Marks: 40
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

1. Answer any five questions:
(a) Obtain a reduction formula for $\int x^{n} e^{-a x} d x,(n \neq-1)$.
(b) Find the equation of the sphere whose centre is at $(1,2,3)$ and which passes through the point (7, 8, 9).
(c) Evaluate: $\lim _{x \rightarrow \pi / 2}(1-\sin x) \tan x$.
(d) Find the envelope of the curve $x^{2} \cos \theta+y^{2} \sin \theta=a^{2}, \theta$ is a parameter.
(e) Find the equation of the directrix of the conic $r \sin ^{2} \frac{\theta}{2}=1$.
(f) Obtain the asymptotes of the given curve $x y=25$.
(g) Solve: $x^{2} y d x-\left(x^{3}+y^{3}\right) d y=0$.
(h) Find the value of m for which the plane $x+y+z=m$ touches the sphere $x^{2}+y^{2}+z^{2}-2 x-2 y-2 z-6=0$.
2. Answer any four questions:
(a) Reduce the equation $x^{2}-5 x y+y^{2}+8 x-20 y+15=0$ to its standard form and show that it represents a hyperbola.
(b) (i) Find the value of the constants a and b such that $\lim _{x \rightarrow 0} \frac{x(1+a \cos x)-b \sin x}{x^{3}}=1$.
(ii) If $y=\sin ^{-1} x$, then show that $\left(1-x^{2}\right) y_{2}-x y_{1}=0$.
(c) Show that the valume of the solid obtained by revolving the cardiode $r=a(1+\cos \theta)$ about the initial line is $\frac{8}{3} \pi a^{3}$.
(d) Find the condition that the straight line $\frac{l}{r}=a \cos \theta+b \sin \theta$ may touch the circle $r=2 d \cos \theta$.
(e) Determine the asymptotes of the curve $(x-y)(x+y)(x+2 y)+y(x-y)+1=0$.
(f) (i) Prove that the number of integrating factors of an equation $M d x+N d y=0$, which has a solution, is infinite.
(ii) Solve: $\left(x^{2} y-2 x y^{2}\right) d x+\left(3 x^{2} y-x^{3}\right) d y=0$.
3. Answer any one :
(a) (i) Show that $\lim _{\theta \rightarrow \frac{\pi}{2}}(\cos \theta)^{\cos \theta}=1$
(ii) Find the point of inflexion of the curve $a^{2}=r^{2} \theta$.
(iii) The circle $x^{2}+y^{2}=a^{2}$ is devided by the hyperbola $x^{2}-2 y^{2}=\frac{a^{2}}{4}$. Find out the area of the portion of the circle which is not contained in the hyperbola. $3+3+4=10$
(b) (i) Prove that the necessary and sufficient condition for ODE $M d x+N d y=0$ to be exact is $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$.
(ii) Find the point of inflexion, if any, of the curve $y\left(a^{2}+x^{2}\right)=x^{3}$.
(iii) If $y=\left(x^{2}-1\right)^{n}$, then prove that $\left(x^{2}-1\right) y_{n+2}+2 x y_{n+1}=n(n+1) y_{n} . \quad 4+3+3=10$
