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 1. Answer any five questions: 2×5=10 

   (a) Is union of two equivalence relations an equivalence relation? (Justify). 

   (b) If , ,  are three positive real numbers, show that + + ≥ + + . 

   (c) If A be an invertible matrix, then show that  is invertible and ( ) = . 

   (d) A matrix A has eigenvalues 1 and 4 with corresponding eigenvectors (1, −1)  and (2, 1)  
respectively. Find the matrix A. 

   (e) Prove that √ + √− = 2 . 
   (f) Find the remainder when 4  is divided by 9. 

   (g) V and W are two subspaces of  and ∶  →  is a linear transformation. Prove that (θ ) = θ  where the symbols have the usual meaning. Hence show that 

     (− ) = − ( ) ∀  ∈  . 

   (h) If , ,  are the roots of − + − = 0, obtain the value of ∑ . 

 2. Answer any four questions: 5×4=20 

   (a)  (i) A relation  on Z, (Z, be the set of integers), such that  if and only if 4 + 7  is 
divisible 11, for ,  ∈  . Verify the relation  is an equivalence relation on Z or 
not. 

     (ii) (> 1) be a positive integer then show that ( + 1)   ( + 2) > 3 ( !) . 3+2=5  

   (b)  (i) Define cardinality of a set. Do the sets Z and N have same cardinal number? (Z and N 
be the set of integers and natural numbers.) 

     (ii) If  be a root of the equation = 1, then show that the roots of the equation. 

      + + 2 = 0 are ( + + ) and ( + + ). (1+2)+2=5 
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   (c)  (i) Find the greatest eigen value and the corresponding eigen vector of the matrix 

      A = 
211    232   112  

     (ii) Using mathematical induction, prove that there are 2  subsets of a set of n elements. 
       3+2=5 

   (d) Let : →  be a mapping defined by 

    ( ) = |  | + ,  ∈   and 

    g ∶ →  be another mapping defined by g( ) = |  | − ,  ∈   ; 
    Find the compositions ∘  and ∘ . 5 

   (e) Determine the linear mapping ∶ →  that maps the basis vectors (0, 1, 1), (1, 0, 1), 
(1, 1, 0) of  to  (2, 1, 1), (1, 2, 1), (1, 1, 2) respectively. 5 

   (f) The eigenvalues of a 3 × 3 matrix A are in A.P. and given that |A| = 80, Trace A = 15. Find 
the eigenvalues. 5 

 
 3. Answer any one question:   10×1=10 

   (a)  (i) Examine if the relation  defined on Z by = {( , ) ∈  × ∶ 7 3 + 4⁄ } is an 

equivalence relation. 

    (ii)  Verify Caley-Hamilton theorem for the square matrix 

      A = 
110   001  0  1 0 . Hence find . 

    (iii)  From the result of 3a (ii) above, compute . 3+4+3=10 

   (b)  (i) If ( ) is an equivalence class and  ∈  ( ) then prove that ( ) = ( ).  

     (ii) Find ∘  and  ∘  if ∶ →  be defined by ( ) = | | + , ∈   : and →  
be defined by (x) = | x |  – x,  ∈  .    

     (iii) Determine the condition for which the following system of equation has 

      (I) only one solution (II) no solution  (III) many solution 

       + + =  

       2 + + 3 = + 1 

       5 + 2 + =    2+3+5=10 

________ 
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 1. Answer any five questions: 2×5=10 

   (a) Obtain the perimeter of the circle + = . 

   (b) Find sin cos ./
 . 

   (c) Find lim →∝ ( ) where ( ) satisfies the differential equation + = 0 with (0) = 2. 

    where =  . 

   (d) Find the general solution of + = , where A and B are functions of x alone. 

   (e) Solve the equation = + +  and obtain the singular solution. 

   (f) Find the centre and radius of the sphere 2( + + ) − 2 + 4 − 6 = 15. 

   (g) Find the asymptotes of − 3 − 4 = 0. 

   (h) Find the equation of the line = √3  when the axes are rotated through an angle  . 
 
 2. Answer any four questions: 5×4=20 

   (a) If =  , then show that  

     (i) (1 − ) − − = 0, 

     (ii) (1 − ) − (2 + 1) − ( + ) = 0. 2+3=5  

   (b) Establish reduction formula for sin   and evaluate sin  /
. 3+2=5 

   (c) Solve the equation ( + 2 ) − = 0. 
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   (d) Find the enveloping cone of the ellipsoid + 3 + 5 = 1 with its vertex at (1, 2, 3). 

   (e) Reduce the equation − 5 + + 8 − 20 + 15 = 0 to its canonical form and 

determine the nature of the conic represented by it. 

   (f)  (i) Find the surface area of the solid generated by revolving the cycloid = (θ + sin θ) , = (1 + cos θ) about its base. 

     (ii) Show that the semi-latus rectum of a conic is a harmonic mean between the segments 
of any focal chord. 3+2=5  

 
 3. Answer any one question:   10×1=10 

   (a)  (i) If = tan . , then show that ( + 1) + ( − 1) = − . 

    (ii)  A body whose temperature is initially 100°C is allowed to cool in air whose 
temperature remains at a constant temperature 20°C. It is given that after 10 minutes, 
the body has cooled to 40°C. Find the temperature of the body after 30 minutes. 

    (iii)  Show that the conic = 1 − cos θ and = 1 − cos  (θ − α) will touch each 

other if (1 − ) + (1 − ) = 2 (1 − cos  .) 3+4+3=10 

   (b)  (i) Show that the total arc length of the ellipse =  cos , = sin , 0 ≤ ≤ 2π for > > 0 is given by 4 √1 − cos/
 dt, where = √

. 

     (ii) Solve : (4 − 6) + = 0   5+5=10 

________ 
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 1. Answer any five questions: 2×5=10 

   (a) Find sin cos  /  . 
   (b) Find lim → (cos ) / . 

   (c) If the co-ordinate axes are rotated through an angle 45º without changing the origin, find 
the transformed equation for − = . 

   (d) Find the general solution of + =  where ,  are function of  alone. 

   (e) Find an integrating factor of the differential equation + + +( + ) = 0. 

   (f) Find the envelope of the family of straight line cos + sin  = a,  is the parameter. 

   (g) Find the nature of the conic represented by 3 − 8 − 3 + 10 − 13 + 8 = 0. 

   (h) Evaluate lim →  
. 

 2. Answer any four questions: 5×4=20 

   (a) State Leibnitz’s theorem on successive derivatives. If = log( + √1 + ), then show 
that (1 + ) + (2 + 1) + = 0. 1+4=5 

   (b) Reduce the equation − 2 + 2 − 4 − 6 + 3 = 0 to its canonical torm and 
determine the type of the conic represented by it. 

   (c) Define singular solution of an ordinary differential equation. If  and  be solutions of 

the equation + ( ) = ( ) and = , then show that = 1 + · ̅ ( / ) , 

where  is an arbitrary consant. 1+4=5 

16459-Bnk-I-Mathematics-101-C-1A-19-B.docx 



SP-I/Mathematics-101/C-1A/19 ( 2 ) 

   (d)  (i) If = tan θ θ/
, then show that ( + ) = 1. 

     (ii) Show that the semi-latus rectum of a conic is a harmonic mean between the segments 
of any focal chord. 3+2=5 

   (e)  (i) Solve: ( + 2 ) + ( − ) = 0. 

     (ii) Find the envelope of the straight line = +  ,  being a parameter. 

   (f) Find the asymptotes of + 2 + − + 1 = 0. 

 
 3. Answer any one question:   10×1=10 

   (a)  (i) If lim →  is finite, find  and the value of the limit.  

     (ii) If = sin   ( ≥ 1)/
, show that = − ( − 1) . 

     (iii) Solve + + = 0, given that = 1 when = 1. 3+4+3=10 

   (b)  (i) The number of bacteria in a yeast culture grows at a rate proportional to the number 
present. If the population of a colony yeast bacteria triple in 1 hour, find the number of 
bacteria that will be present at the end of  5 hours. 

     (ii) Prove that no two generators of the same system of a hyperboloid of one sheet 
intersect. 

     (iii) Show that the straight line = cos + sin  touches the conic = 1 + cos θ if ( − ) + = 1.   3+4+3=10 

________ 
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 1. Answer any five questions: 2×5=10 

   (a) Obtain a reduction formula for , ( ≠ −1). 
   (b) Find the equation of the sphere whose centre is at (1, 2, 3) and which passes through the 

point (7, 8, 9). 

   (c) Evaluate: lim→ / (1 − sin ) tan . 

   (d) Find the envelope of the curve cos θ + y sinθ = , θ is a parameter. 

   (e) Find the equation of the directrix of the conic sin = 1. 

   (f) Obtain the asymptotes of the given curve xy = 25. 

   (g) Solve: − ( + ) = 0. 

   (h) Find   the  value of  m  for  which  the plane   + + =   touches  the sphere 

     + + − 2 − 2 − 2 − 6 = 0. 

 2. Answer any four questions: 5×4=20 

   (a) Reduce the equation − 5 + + 8 − 20 + 15 = 0 to its standard form and show 
that it represents a hyperbola. 5 

   (b)  (i) Find the value of the constants a and b such that  lim → ( ) = 1. 

     (ii) If = sin , then show that (1 − ) − = 0. 3+2=5 

   (c) Show that the valume of the solid obtained by revolving the cardiode = (1 + cos θ) 
about the initial line is  π . 5 

   (d) Find the condition that the straight line = cos θ + sin θ may touch the circle = 2 cos θ. 

   (e) Determine the asymptotes of the curve ( − )( + )( + 2 ) + ( − ) + 1 = 0. 5 
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   (f)  (i) Prove that the number of integrating factors of an equation Mdx + Ndy = 0, which 
has a solution, is infinite. 

     (ii) Solve: ( − 2 ) + (3 − ) = 0. 3+2=5 

 
 3. Answer any one :   10×1=10 

   (a)  (i) Show that lim→ (cos θ) = 1 

     (ii) Find the point of inflexion of the curve = θ. 

     (iii) The circle + =  is devided by the hyperbola − 2 =  . Find out the 

area of the portion of the circle which is not contained in the hyperbola. 3+3+4=10 

   (b)  (i) Prove that the necessary and sufficient condition for ODE Mdx + Ndy = 0 to be exact 

is = . 

     (ii) Find the point of inflexion, if any, of the curve ( + ) = . 

     (iii) If = ( − 1) , then prove that ( − 1) + 2 = ( + 1) . 4+3+3=10 

________ 
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