B.Sc. Semester I (Honours) Examination, 2018-19
 MATHEMATICS

Course Id : 12112
Course Code : SHMTH-102C-2(T)

Course Title : Algebra

Time: 2 Hours
Full Marks: 40
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

1. Answer any five questions:
(a) Use De Moivre's theorem to prove that $\tan 4 \theta=\frac{4 \tan \theta-4 \tan ^{3} \theta}{1-6 \tan ^{2} \theta+\tan ^{4} \theta}$.
(b) State Division algorithm. Use it to find the remainder when -326 is divided by $5 . \quad 1+1=2$
(c) If $S=a+b+c$, prove that $\frac{s}{a-b}+\frac{s}{s-b}+\frac{s}{s-c}>9 / 2$.
(d) Find all the equivalence relations on the set $S=\{a, b, c\}$.
(e) For what values of k, the following system of equations has a non-trivial solution?

$$
x+2 y+3 z=k x, 2 x+y+3 z=k y, 2 x+3 y+z=k z
$$

(f) When a transformation $T: R^{m} \rightarrow R^{n}$ is said to be a linear transformation? Is the following transformation linear?
$T: R^{2} \rightarrow R$ defined by

$$
T(x, y)=|x-y|, \text { for all } x, y \in R .
$$

(g) If an equation $f(x)=0$ with real coefficients consists of only even powers of x with all positive signs, show with proper reason that the equation cannot have a real root.
(h) Let $A=\left(\begin{array}{ccc}1 & 2 & 3 \\ 0 & -2 & 5 \\ 0 & 0 & 2\end{array}\right)$. Find the eigenvalues of the matrix $A^{5}-I_{3}$.
2. Answer any four questions:
(a) Define rank of a matrix. Find the row reduced echelon form of the matrix

$$
\left(\begin{array}{ccccc}
1 & -1 & 2 & 0 & 4 \\
2 & 2 & 1 & 5 & 2 \\
1 & 3 & -1 & 0 & 3 \\
1 & 7 & -4 & 1 & 1
\end{array}\right) \text { and find its rank. }
$$

(b) (i) If $a x \equiv a y(\bmod n)$ and a is prime to n, then show that $x \equiv y(\bmod n)$.
(ii) Obtain the equation whose roots are the roots of the equation $x^{4}-8 x^{2}+8 x+6=0$, each diminished by 2 .
(c) If a, b, c be positive real numbers such that the sum of any two is greater than the third, then prove that $a b c \geq(a+b-c)(b+c-a)(c+a-b)$. Derive when equality occurs. $4+1=5$
(d) State the second principle of mathematical induction and using this principle, prove that $(3+\sqrt{5})^{n}+(3-\sqrt{5})^{n}$ is divisible by 2^{n}, for all $n \in N$ (N be set of natural numbers).
(e) Show that the eigenvalues of a real symmetric matrix are all real.
(f) (i) Show that $A=\left\{\left(x_{1}, x_{2}, x_{3}, \ldots x_{n}\right) \in R^{n}: x_{1}+x_{2}+\cdots+x_{n}=0\right\}$ is a subspace of R^{n}. Find the dimension of the subspace A of R^{n}.
(ii) Is the union of two subspaces of R^{n}, a subspace of R^{n} ? Justify your answer. $\quad 3+2=5$
3. Answer any one question:

$$
10 \times 1=10
$$

(a) (i) Show that the transformation $T: R^{3} \rightarrow R^{2}$ defined by $T(x, y, z)=(z, x+y)$ is linear.
(ii) Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be two mappings such that $g_{0} f: A \rightarrow C$ is injective. Is it necessary that g is injective? Justify your answer.
(iii) Solve the cubic equation $x^{3}-9 x+28=0$ by Cardon's method. $3+2+5=10$
(b) (i) Prove that any partition of a non-empty set S induces an equivalence relation on S .
(ii) Prove or disprove:
"Composition of two linear transformation from $R^{m} \rightarrow R^{n}$ is linear transformation."
(iii) A linear mapping $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is defined by $T\left(x_{1}, x_{2}, x_{3}\right)=\left(2 x_{1}+x_{2}-x_{3}, x_{2}+4 x_{3}\right.$, $\left.x_{1}-x_{2}+3 x_{3}\right)\left(x_{1}, x_{2}, x_{3}\right) \in R^{3}$. Obtain the matrix of T relative to the ordered base $(0,1,1),(1,0,1),(1,1,0)$ of \mathbb{R}^{3}. $3+2+5=10$

B.Sc. Semester I (Honours) Examination, 2018-19
 MATHEMATICS
 Course Code : SHMTH-103GE-1(T)

Course Id : 12114
Course Title : Calculus, Geometry \& Differential Equation

Time: 2 Hours

Full Marks: 40
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

1. Answer any five questions:
(a) Find the n-th derivative of the function $y=\log (x+a)$.
(b) Solve: $(x+y+1) d y=d x$
(c) Evaluate: $\int_{0}^{\frac{\pi}{2}} \cos ^{4} x \sin ^{2} x d x$
(d) Find the envelope of the straight line $y=m x+\frac{a}{m}, m$ being the variable parameter $(m \neq 0)$.
(e) Reduce the differential equation $x y^{\prime}+y=y^{2} \log x$ to a linear form.
(f) Find the asymptotes of $x^{2}-4 y^{2}=1$.
(g) Find the equation of the sphere through the points $(0,0,0),(a, 0,0),(0, b, 0)$ and $(0,0, c)$.
(h) Transform the equation $x^{2}+2 \sqrt{3} x y-y^{2}-2=0$ to axes inclined at 30° to the original axes.
2. Answer any four questions:
(a) (i) Find the value of $\lim _{x \rightarrow 1}\left(x^{\frac{1}{1-x}}\right)$.
(ii) If $\lim _{x \rightarrow 0} \frac{\sin 2 x+a \sin x \rightarrow}{x^{3}}$ is finite, find a and the value of the limit. $\quad 2+(2+1)=5$
(b) If $I_{n}=\int \sec ^{n} x d x$, then show that $(n-1) I_{n}=\tan x \sec ^{n-2} x+(n-2) I_{n-2}$ and hence evaluate $\int_{0}^{\frac{\pi}{4}} \sec ^{5} x d x$.
(c) (i) Find the order and degree of the differential equation $\sqrt{y+\left(\frac{d y}{d x}\right)^{2}}=1+x$.
(ii) Find the general solution of the differential equation $\frac{d y}{d x}=\left(x^{2}+1\right)\left(y^{2}+1\right) . \quad 2+3=5$
(d) If $y=\cos \left(10 \cos ^{-1} x\right)$, show that $\left(1-x^{2}\right) y_{12}=21 x y_{11}$. State Leibnitz's theorem. $4+1=5$
(e) Obtain singular solution of the equation $y=p x+p-p^{2}$, where $p=\frac{d y}{d x}$.
(f) The radius of a right circular cylinder is 2 and its axis is given by $\frac{x}{1}=\frac{y}{-2}=\frac{z}{2}$; Find the equation of the cylinder.
3. Answer any one question:
(a) (i) Find the equation of the cone whose vertex is at $(1,0,-1)$ and which passes through the circle $x^{2}+y^{2}+z^{2}=4, x+y+z=1$.
(ii) Find the length of the astroid $x=\cos ^{3} t, y=\sin ^{3} t, 0 \leq t \leq 2 \pi$.
(iii) Using L'Hospital Rule, evaluate $\lim _{x \rightarrow 0}\left(\frac{\tan x}{x}\right)^{1 / x^{2}}$. $4+3+3=10$
(b) (i) Solve: $(1+x y) y d x+(1-x y) x d y=0$
(ii) Show that in any conic the sum of the reciprocals of the segments of a focal chord is constant.

B.Sc. Semester I (General) Examination, 2018-19 MATHEMATICS

Course Id : 12118
Course Code : SPMTH-101C-1A(T)
Course Title : Calculus, Geometry \& Differential Equation

Time: 2 Hours

Full Marks: 40
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

1. Answer any five questions:
(a) Examine the curve $y-\sin x$ regarding its convexity or concavity to the x-axis.
(b) Evaluate: $\lim _{x \rightarrow 0} \frac{\sin x-x}{x^{3}}$
(c) Find the nature of the conic represented by $9 x^{2}-6 x y+y^{2}-14 x-2 y+12=0$
(d) Identify the order and degree of the differential equation $\sqrt{1+\left(y^{\prime}\right)^{2}}=x+1$
(e) Evaluate: $\int_{0}^{\frac{\pi}{2}} \cos ^{4} x d x$
(f) Find the asymptotes of $x^{2}-y^{2}=9$
(g) Find an integrating factor of the differential equation $\left(x^{2}+y^{2}+2 x\right) d x+2 y d y=0$.
(h) Find the centre and radius of the sphere $x^{2}+y^{2}+z^{2}+2 x-4 y-6 z+5=0$.
2. Answer any four questions:
(a) Evaluate: $\lim _{x \rightarrow 0}(\cos x)^{\cot ^{2} x}$
(b) If $y=\frac{\sin ^{-1} x}{\sqrt{1-x^{2}}}|x|<1$, then show that
(i) $\left(1-x^{2}\right) y_{2}-3 x y_{1}-y=0$
(ii) $\left(1-x^{2}\right) y_{n+2}-(2 n+3) x y_{n+1}-(n+1)^{2} y_{n}=0 \quad 2+3=5$
(c) Solve: $\left(4 x^{2} y-6\right) d x+x^{3} d y=0 \quad 5$
(d) Find the surface area generated by revolving the straight line $x=1-y, 0 \leq y \leq 1$ about y axis.
(e) Find the asymptotes of $y^{2}-x^{2}-2 x-2 y-3=0$.
(f) What is rotation of axes? What will be the form of the equation $x^{2}-y^{2}=4$, if the co-ordinate axes are rotated through an angle $\left(-\frac{\pi}{2}\right)$.
3. Answer any one question:
(a) (i) Find the length of the curve $y=\left(\frac{x}{2}\right)^{2 / 3}$ from $x=0$ to $x=2$.
(ii) Find if there is any point of inflexion on the curve $y-3=6(x-2)^{5}$
(iii) Solve: $\left(x^{3}+3 x y^{2}\right) d x+\left(y^{3}+3 x^{2} y\right) d y=0 \quad 4+3+3=10$
(b) (i) Find a and b such that $\lim _{x \rightarrow 0} \frac{x(1+a \cos x)-b \sin x}{x^{3}}=1$.
(ii) Find the equation of the right circular cylinder whose radius is 1 and x-axis is the axis.

B.Sc. Semester I (Honours) Examination, 2018-19 MATHEMATICS

Course Id : 12111

Course Code : SHMTH-101C-1(T)

Course Title : Calculus, Geometry and Differential Equation

Time: 2 Hours

Full Marks: 40
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

1. Answer any five questions:
(a) Evaluate: $\lim _{x \rightarrow 1} \frac{\log (1-x)}{\cot (\pi x)}$
(b) Define rectilinear asymptotes of a plane curve.
(c) Find the perimeter of the cardioid $r=a(1-\cos \theta)$
(d) Define Bernoulli's equation. Can it be put in the linear form? Justify your answer.
(e) Solve : $\frac{d y}{d x}+y \frac{d \Phi(x)}{d x}=\Phi(x) \frac{d \Phi(x)}{d x}$
(f) Show that the semi-latus rectum of a conic is a harmonic mean between the segments of any focal choral.
(g) Find the nature of the conicoid: $3 x^{2}-2 y^{2}-12 x-12 y-6 z=0$.
(h) Prove that $\left(a-2,-2 / e^{2}\right)$ is a point of inflexion of the curve $y=(x-a) e^{x-a}$.
2. Answer any four questions:
$5 \times 4=20$
(a) If $J_{n}=\int \sec ^{n} x d x$, then show that $(n-1) J_{n}=\tan x \sec _{x}^{n-2}+(n-2) J_{n-2}$. Hence, find a reduction formula for $\int_{0}^{\frac{\pi}{4}} \sec ^{n} x d x$ and use this formula to evaluate $\int_{0}^{\frac{\pi}{4}} \sec ^{5} x d x . \quad 2+1+2=5$
(b) Define envelope of a family of curves. Find the condition between a and b so that the envelope of the family of the lines $x / a+y / b=1$ may be the curve $x^{p} y^{q}=k^{p+q} . \quad 2+3=5$
(c) (i) Show that if a straight line meets a conicoid in three points, then the straight line lies wholly on the conicoid.
(ii) Find the equation of the sphere for which the circle $x^{2}+y^{2}+z^{2}+7 y-2 z+2=0$, $2 x+3 y+4 z=8$ is a great circle. $\quad 2+3=5$
(d) Find the area common to the circles $r=a \sqrt{2}$ and $r=2 a \cos \theta$. 5
(e) What do you mean by Integrating Factor? Find the integrating factor of the ODE $(x y \sin x y+\cos x y) y d x+(x y \sin x y-\cos x y) x d y=0$. Hence solve it. $\quad 1+1+3=5$
(f) If the population of a country doubles in 100 years, in how many years will it treble under the assumption that the rate of increase is proportional to the number of inhabitants?
3. Answer any one question:
(a) (i) If $y=\frac{\log x}{x}$, prove that $y_{n}=\frac{d^{n} y}{d x^{n}}=\frac{(-1)^{n}\llcorner n}{x^{n+1}}\left[\log x-1-\frac{1}{2}-\frac{1}{3} \ldots-\frac{1}{n}\right]$.
(ii) Find the asymptotes of the curve

$$
\left.\begin{array}{l}
x=\frac{1}{t^{4}-1} \\
y=\frac{t^{3}}{t^{4}-1}
\end{array}\right\}
$$

(iii) Find the surface generated by the revolution of an arc of the catenary $y=c \cosh ^{x} / c$ about the axis of x.
$3+3+4=10$
(b) (i) Find the values of b and g such that the equation $9 x^{2}+12 x y+b y^{2}+2 g x+4 y+1=0$ represents a conic having infinitely many centres and determine the nature of the conic.
(ii) A variable plane is parallel to the given plane ${ }^{x} / a+y / b+z / c=2$ and meets the axes in A, B, C respectively. Show that the circle ABC lies on the cone

$$
(b / c+c / b) y z+(a / c+c / a) z x+(a / b+b / a) x y=0
$$

(iii) Show that if y_{1} and y_{2} are two solutions of the $O D E \frac{d y}{d x}+P y=Q$ where P and Q are functions of x only and $y_{2}=y_{1} z$ then show that $z=1+a e^{-\int \frac{Q}{y_{1}} d x}, a$ being an arbitrary constant.

