BANKURA UNIVERSITY
 B. Sc. Semester I (Hons) Examination 2017
 MATHEMATICS

Subject Code : 12102 Course Code : UG/SC/102/C-02
Course Title : Algebra
Full Marks : 40
Time : $\mathbf{2}$ Hours
The figures in the right hand side margin indicate marks.

1. Answer any five questions: $2 \times 5=10$
a) If the sum of two roots of the equation $x^{3}+p x^{2}+q x+\mathrm{r}=0$ is zero, then show that $\mathrm{pq}=\mathrm{r}$
b) Express the complex number - 1-i in Polar form with Principal argument.
c) z is a variable complex number such that an amplitude of $\frac{z-i}{z+1}$ is $\pi / 4$. Show that the point z lies on a circle in the complex plane.
d) Show that for any three real numbers a, b, c

$$
a^{8}+b^{8}+c^{8} \geq a^{2} b^{2} c^{2}(a b+b c+c a) .
$$

e) Let λ be an eigen value of an $n \times n$ matrix A . Show that λ^{2} is an eigen value of A^{2}.
f) Is the following transformation linear?
$\mathrm{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by
$\mathrm{T}(x, y)=(x+y, 0), \forall x, y \in \mathbb{R}$
g) Suppose R and S are two equivalence relations on a nonempty set A. Verify whether $R \cup S$ and $R \cap S$ are equivalence relations on A .
h) Use the theory of congruence to find the remainder when the sum $1^{3}+2^{3}+3^{3}+\ldots . .+99^{3}$ is divided by 3 .
2. Answer any four questions: $5 \times 4=20$
a) i) If α, β, γ be the roots of the equation $x^{3}+p x^{2}+q x+r=0$, find the equation whose roots are $\alpha \beta+\beta \gamma, \beta \gamma+\gamma \alpha, \gamma \alpha+\alpha \beta$.
ii) Find the minimum number of complex roots of the equation $x^{7}-3 x^{3}+x^{2}=0$.
b) Determine the values of a and b for which the system

$$
\begin{aligned}
& x+y+z=1 \\
& x+2 y-z=b \\
& 5 x+7 y+a z=b^{2}
\end{aligned}
$$

has no solution, only one solution, many solutions respectively.
c) If

$$
A=\left(\begin{array}{lll}
1 & -3 & 3 \\
3 & -5 & 3 \\
6 & -6 & 4
\end{array}\right)
$$

then find three eigen vectors ofA which are linearly independent. 5
d) i) If a is prime to b then prove that $a^{2}+b^{2}$ is prime to $a^{2} b^{2}$. 2
ii) Prove that the product of k consecutive integers is divisible by k. 3
e) A relation β is defined on \mathbb{z} by " $x \beta y$ if and only if $x^{2}-y^{2}$ is divisible by 5 " for $x, y, \in \mathbb{Z}$. Prove that β is an equivalence relation on \mathbb{Z} and find the distinct equivalence classes.
f) Let $\mathrm{V}(\mathrm{F})$ be a vector space and $\mathrm{S} \neq \phi$ be a finite subset of V . Then prove the set W of all linear combinations of the elements of S forms a subspace of V. Also show that W is the smallest subspace of V containing S.
$3+2$

3. Answer either (a) or (b) :

$10 \times 1=10$
a) i) Show that the sets $A=\{x \in \mathbb{R}: 0 \leq x \leq 1\}$ and $B=\{x \in \mathbb{R}: a \leq x \leq b\}$ have same cardinal number. 3
ii) If $|z|=1$ and $\operatorname{amp} z=\theta,(0<\theta<\pi)$ then find the modulus and principal amplitude of $\frac{2}{1+z}$.
iii) Prove that for $n>3$, the integers $n, n+2, n+4$ cannot be all primes.
b) i) State and prove the Cauchy - Schwarz inequality.6
ii) Verify Caley - Hamilton theorem for the matrix 4

$$
A=\left(\begin{array}{ccc}
0 & 0 & 1 \\
3 & 1 & 0 \\
-2 & 1 & 4
\end{array}\right) \text {. Hence find } \mathrm{A}^{-1}
$$

BANKURA UNIVERSITY
 B. Sc. Semester I (Hons) Examination 2017 MATHEMATICS

Subject Code : 12101 Course Code : UG/SC/101/C-01
Course Title : Calculus, Geometry \& Differential Equation
Full Marks : 40
Time : 2 Hours
The figures in the right hand side margin indicate marks.

1. Answer any five questions :

a) Evaluate $\lim _{x \rightarrow \frac{\pi}{2}}\left(x \tan x-\frac{\pi}{2} \sec x\right)$.
b) Find the envelope of the curves $x^{2} \cos \theta+y^{2} \sin \theta=a^{2}, \theta$ is a parameter.
c) Find the length of one arc of the cycloid $x=a(t-\sin t), y=a(1-\cos t), a \geq 0$.
d) Show that the conic $a x^{2}+2 h x y+b y^{2}+2 g x \cos ^{2} \alpha+2 f y \sin ^{2} \alpha+c=0$, where α is a parameter, always passes through two fixed points, provided $g^{2} f^{2}>\mathrm{c}\left(a f^{2}+2 h f g+b g^{2}\right)$.
e) Show that $\mathrm{I}(x, y)=\int^{\int^{\rho}(x) \mathrm{dx}}$ is an integrating factor for $\frac{d y}{d x}+\mathrm{p}(x) y=0$, where $\mathrm{p}(x)$ denotes an integrable function.
f) If $y=\sin 3 x \cdot \cos 2 x$, find y_{n}, where the suffix n denotes the order of differentiation with respect to x.
g) Assume that the population $x(t)$ of bacteria present in a nutrient solution at any time t is increasing at a rate proportional to the population at that time, find x as a function of t, if the initial population being given as x_{0} at $t=0$.
h) Find the equation of the circle on the sphere $x^{2}+y^{2}+z^{2}=49$ whose centre is at the point $(2,-1,3)$.
2. Answer any four questions: $5 \times 4=20$
a) State Leibnitz's Theorem on successive derivatives.

If $x=\tan (\log y)$ prove that
$\left(1+x^{2}\right) y_{n+1}+(2 n x-1) y_{n}+n(n-1) y_{n-1}=0$
b) Find all the asymptotes of the curve $x^{3}+2 x^{2} y-x y^{2}-2 y^{3}+x y-y^{2}-1=0$.
c) If $I_{n}=\int_{0}^{\frac{\pi}{2}} x^{n} \sin x d x, n$ being a positive integer >1 show that $I_{n}+n(n-1) I_{n-2}=n\left(\frac{\pi}{2}\right)^{n-1}$. Hence find the value of $\int_{0}^{\frac{\pi}{2}} x^{5} \sin x d x$.
d) Show that the straight line $r \cos (\theta-\alpha)=p$ touches the conic $\frac{l}{r}=1+\mathrm{e} \cos \theta$, if $(l \cos \alpha-e p)^{2}+l^{2} \sin ^{2} \alpha=\mathrm{p}^{2}$.
e) Find the equations of the lines in which the plane $2 x-6 y-5 z=0$ cuts the cone $y z+z x+x y=0$.
f) i) Solve the logistic model $\dot{x}=k x(1-x), k>0$ subject to the condition $x=x_{0}$ at $t=t_{0}$ and show that $x \rightarrow 1$ as $t \rightarrow \infty$.
ii) Solve : $x \cos \left(\frac{y}{x}\right)(y d x+x d y)=y \sin \left(\frac{y}{x}\right)(x d y-y d x)$. $\quad(2+1)+2$
3. Answer any one question :
$10 \times 1=10$
a) i) Find the nature of the quadric surface
$2 x^{2}+5 y^{2}+3 z^{2}-4 x+20 y-6 z=5$
ii) Find the equation of the right circular cylinder of radius 3 and whose axis is $\frac{x-1}{2}=\frac{y-2}{-3}=\frac{z-3}{6}$.
iii) The arc of the cardiod $r=a(1+\cos \theta)$ specified by $-\pi / 2 \leq \theta \leq \pi / 2$, is rotated about the line $\theta=0$. Find the area of the generated surface of revolution.
b) i) If $\quad I_{n}=\int_{0}^{\frac{\pi}{4}} \tan ^{n} x d x$, then prove that $I_{n}=\frac{1}{n-1}-I_{n-2}$.
ii) Solve:
(I) $\frac{d y}{d x}+x \sin 2 y=x^{3} \cos ^{2} y$, given that $y(0)=\pi / 4$.
(II) $\frac{d y}{d x}+\frac{y}{x} \log _{e} y=\frac{y}{x^{2}}\left(\log _{e} y\right)^{2}$.

BANKURA UNIVERSITY
 B. Sc. Semester I (Programme) Examination 2017 MATHEMATICS

Subject Code : 12104 Course Code : UGP/SC/101/C-1A
Course Title : Calculus, Geometry \& Differential Equation
Full Marks : 40
Time : 2 Hours
The figures in the right hand side margin indicate marks.

1. Answer any five questions: $2 \times 5=10$
a) Using L'Hospital's rule show that $\lim _{x \rightarrow \frac{\pi}{2}} \frac{\tan x-x}{x-\sin x}=2$
b) Find the oblique asymptote of the curve $y=x e^{\frac{1}{x}}$
c) Determine the length of the parametric curve given by the following parametric equations $x=3 \sin t$ and $y=3 \cos t ; 0 \leq t \leq 2 \pi$.
d) Find the order and degree of the following differential equation.

$$
\begin{equation*}
\left\{1+\left(\frac{d y}{d x}\right)^{2}\right\}^{\frac{3}{2}}=2 \frac{d^{2} y}{d x^{2}} \tag{2}
\end{equation*}
$$

e) Solve $\left(1-x^{2}\right) \frac{d y}{d x}-2 x y=x-x^{3}$.
f) Find the centre and the radius of the sphere

$$
\begin{equation*}
3 x^{2}+3 y^{2}+3 z^{2}+2 x-4 y-2 z-1=0 \tag{2}
\end{equation*}
$$

g) Find the nature of the quadric surface given by the equation2

$$
\begin{equation*}
2 x^{2}+5 y^{2}+3 z^{2}-4 x+20 y-6 z=5 \tag{2}
\end{equation*}
$$

h) Evaluate $\int_{0}^{\frac{\pi}{4}} \tan ^{6} x d x$.
2. Answer any four questions: $5 \times 4=20$
a) Sketch the curve parameterized by 5

$$
r(t)=<1-t^{2}, 2 t^{2}-t^{4}>, t \in[0,1]
$$

b) Find the values of a and b such that

$$
\operatorname{lt}_{x \rightarrow 0} \frac{x(1-a \cos x)+b \sin x}{x^{3}}=\frac{1}{3}
$$

(Assume that L'Hospital's rule is applicable)
c) Show that $\int_{0}^{\frac{\pi}{2}} \sin ^{n} x d x=\frac{(n-1)(n-3)(n-5) \ldots . .1}{n(n-2)(n-4) \ldots . .2} \cdot \frac{\pi}{2}$
if n be any even positive integer and $n>1$.
d) If $y=\left(x+\sqrt{1+x^{2}}\right)^{m}$, then find the value of $y_{n}(0)$. 5
e) Find the equation of the sphere described on the join of $p(2,-3,4)$ and $\theta(-5,6,-7)$ as diameter.
f) Solve : $\frac{d y}{d x}+\frac{4 x}{x^{2}+1} y=\frac{1}{\left(x^{2}+1\right)^{3}}$
3. Answer any one question :
$10 \times 1=10$
a) i) Find the envelope of the family of co-axial ellipses $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ where the parameter a and b are connected by $a^{n}+b^{n}=c^{n}$.
ii) Find the asymptotes of $x^{3}+x^{2} y-x y^{2}-y^{3}+x^{2}-y^{2}=2$. 4
b) I If $I_{n}=\int_{0}^{\frac{\pi}{2}} x \sin ^{n} x d x, n>1$, show that $I_{n}=\frac{n-1}{n} \quad I_{n-2}+\frac{1}{n^{2}}$. Hence evaluate $\int_{0}^{\frac{\pi}{2}} x \sin ^{5} x d x$. $3+2=5$
ii) Solve : $\left(x^{2} y^{3}+2 x y\right) d y=d x$.

BANKURA UNIVERSITY

B. Sc. Semester I (Hons) Examination 2017

MATHEMATICS
Subject Code : 12103
Course Code : UG/SC/103/GE-01
Course Title : Calculus, Geometry \& Differential Equation
Full Marks : 40
Time : 2 Hours
The figures in the right hand side margin indicate marks.

1. Answer any five questions:
$2 \times 5=10$
a) Define general solution and particular solution of the differential equation.

$$
1+1
$$

b) Evaluate $\int_{0}^{\frac{\pi}{2}} \sin ^{5} x d x$.
c) State L'Hospital Rule. 2
d) Check the curve $y=\sqrt{1+x^{2}} \sin \left(\frac{1}{x}\right)$ has vertical asymptotes or not in the neighbourhood of $x=0$.
e) Solve : $\frac{d y}{d x}=\mathrm{e}^{(\mathrm{x}+\mathrm{y})}+\mathrm{x}^{2} \mathrm{e}^{\left(\mathrm{x}^{3}+\mathrm{y}\right)}$.

2
f) Find the envelope of $y=m x+\sqrt{a^{2} m^{2}+b^{2}}$. where in v the variable parameter.

2
g) Find the nature of the quadric surface given by the equation $2 x^{2}+5 y^{2}+3 z^{2}-4 x+20 y-6 z=5$.
h) Find the equation of the sphere which passes through the origin and touches the sphere $x^{2}+y^{2}+z^{2}=56$ at the point $(2,-4,6)$. 2
2. Answer any four questions:
$5 \times 4=20$
a) Find the equation of the cylinder whose generating line is parallel to the z -axis and the guiding curve $x^{2}+y^{2}=z, x+y+z=1$.
b) Sketch the Cartesian equation of the curve $r(\theta)=<2 \sin \theta \cos \theta$, $2 \sin ^{2} \theta>, \theta \in[0, \pi]$.
c) What do you mean by Integrating Factor? Find the integrating Factor of the differential equation $\left(x^{2} y-2 x y^{2}\right) d x+\left(3 x^{2} y-x^{3}\right) d y$ $=0$, hence solve it.

$$
1+1+3
$$

d) Show that $\int_{0}^{\frac{\pi}{2}} \cos ^{n} x d x=\frac{(n-1)(n-3)(n-5) \ldots . .3 .1}{n(n-2)(n-4) \ldots .4 .2} \frac{\pi}{2}$
if n be any even positive integer, $n>1$.
e) If $y^{\frac{1}{m}}+y^{-\frac{1}{m}}=2 x$, then prove that

$$
\begin{equation*}
\left(x^{2}-1\right) y_{n+2}+(2 n+1) x y_{n+1}+\left(n^{2}-m^{2}\right) y_{n}=0 \tag{5}
\end{equation*}
$$

f) Solve: $\frac{d y}{d x}+x \sin 2 y=x^{3} \cos ^{2} y$.
3. Answer any one question :
$10 \times 1=10$
a)i) Define exact differential equation.

Solve $\left(3 x^{2} y^{4}+2 x y\right) d x\left(2 x^{3} y^{3}-x^{2}\right) d y=0$ $1+4=5$
ii) If $J_{n}=\int_{0}^{\frac{\pi}{4}} \tan ^{n} x d x$ then prove that $J_{n}=\frac{1}{n-1}-J_{n-2}$, where n be positive integer, $n>1$. Hence evaluate $\int_{0}^{\frac{\pi}{4}} \tan ^{6} x d x . \quad 3+2=5$
b) i) Find the asymptotes of the curve $x^{3}-2 x^{2} y+x y^{2}+x^{2}-x y+2=0.5$
ii) Find the equation of the sphere which passes through the points $(1,0,0),(0,1,0),(0,0,1)$ and which touches the plane $2 x+2 y-z=15$.

