B.Sc. 1st Semester(Honours) Examination-2021 FORESTRY

Cours	rse ID:13508 Course Code: Course Title: Basic Mathematic	Course Code: SH/BS/FST/BS 1104 se Title: Basic Mathematics	
Time	e: 3 Hours	Full Marks: 70	
	I. Answer <u>any twenty</u> questions:	$1 \times 20 = 20$	
1. 2.	Find the sum of numbers of the series $3 + 3$ any formula. Let ω be a complex cube root of 1. With prove that $(1 - \omega^2)(1 - \omega^4)(1 - \omega^8)(1 - \omega^4)$	$v^{2} + 3^{3} + \cdots$ without out using any formula, v^{10}) = 9.	
3.	Obtain the total number of permutations with 'TRIANGLE'.	h the letter of the word	
4.	The <i>n</i> th term of a G.P is 2^{2n-1} . Find the sum	of its first four terms.	
5.	Taking a suitable example prove that if determinant of order 3 are identical, the value	any two columns of of its is zero.	
6.	Find the square root of $5 + 2\sqrt{6}$.		
7.	In a triangle $\triangle ABC$, $A = 3B$ and $a = 2b$ obtain the angles of the triangles.	with usual meaning,	
8.	Find the co-efficient of x^m in the expansion of	$f(1+x)^{m+n}.$	
9.	Integrate the function sin^3x w.r.to x.		
10.). Show that $\cos 15^\circ - \sin 15^\circ = \frac{1}{\sqrt{2}}$.		
11. 12.	 If z = x + iy and az + ibz̄ = 0. Find the v b ≠ 0 and z̄ is the conjugate of z. 	alue $x + y$ where $a + $	
13.	3. If the numbers a, b, c are in A.P, show t $b, a + b - c$ are also in A.P.	hat $b + c - a, c + a - b$	

- 14. If $f(x + 3) = 2x^2 3x + 1$, obtain f(x + 1).
- 15. Find the domain of the function $f(x) = \frac{|x|}{x}$.

16. Evaluate
$$\lim_{x \to 0} \frac{1 - \cos^3 x}{\tan^2 x}$$
.

17. Let $\begin{pmatrix} x & 5 \\ 7 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 5 \\ y & 1 \end{pmatrix}$, find the value of x & y.

Please Turn Over

- 18. Prove that $\cos(\frac{\pi}{4} x) + \cos(\frac{\pi}{4} + x) = \sqrt{2}\cos x$.
- 19. If $\sin x = \frac{3}{5}$, $\cos y = \frac{9}{41}$ and x, y are acute angles. Find the value of Sin (x y).
- 20. The roots of the equation $x(x 3) = 4 \operatorname{are} \alpha \& \beta$. Find the value of $\alpha^2 + \beta^2$.
- 21. Eliminate θ from the equations $x = a \sec \theta$, and $y = b \tan \theta$.
- 22. If $\sin^{-1} \cos \sin^{-1} x = \frac{\pi}{3}$, find the value of *x*.
- 23. Express sin θ in terms of $\tan \frac{\theta}{2}$.
- 24. If ${}_{6}^{n}c = {}^{n-2}_{4}c$, find ${}_{3}^{n}c$.
- 25. If $x = a(t + \sin t)$, $y = a(1 \cos t)$, find $\frac{dy}{dx}$.
- 26. Establish geometrically the formula $sin^2\theta + cos^2\theta = 1$
- 27. State when a function f(x) has neither a maximum nor a minimum.
- 28. Write the 5th term of the series $x + \frac{1}{2} \cdot \frac{x^3}{3} + \frac{1.3}{2.4} \cdot \frac{x^5}{5} + \frac{1.3.5}{2.4.6} \cdot \frac{x^7}{7} + \dots$
- 29. For what value of '**a**', 2 is a root of the equation $x^2 3ax + 2 = 0$.

30. Let $A = \begin{pmatrix} 2 & 5 & 3 \\ 1 & 3 & 2 \end{pmatrix}$ form a matrix *B* so that *AB* is possible. Also compute *AB*.

31. Evaluate
$$\lim_{x \to 3} \frac{x^3 - 9}{x - 3}$$
.

- II. Answer *any ten* questions: $2 \times 10 = 20$
 - 1. Express the complex numbers *i* and -i in the polar form of $\cos \theta + i \sin \theta$.

2. Expand
$$(x - \frac{1}{2x})^5$$
.

- 3. If $x = \cos 55^\circ$, $y = \cos 65^\circ$ and $z = \cos 175^\circ$, show that x + y + z = 0.
- 4. How many numbers containing 3 digits can be formed from 0, 1, 2, 3, 4 & 6.
- 5. In an A.P the 5th and 20th terms are 6 and -69 respectively. Obtain the series.

6. From definition , find the derivative of $\tan x$.

Please Turn Over

- 7. When does the function $(\sin 3x 3 \sin x)$ attain its maximum value or minimum value in $(0,2\pi)$?
- 8. In a G.P 3 + 6 + 12 +, the sum of first n terms is 381. Find the value of n.
- 9. Find the middle term of the expression $(x \frac{1}{x})^8$.
- 10. Establish the formula $\cos C \cos D = 2 \sin \frac{C+D}{2} \sin \frac{D-C}{2}$.
- 11. In a plane, 4 points are collinear out of 10 points. Find the no. of
 - (i) straight lines and
 - (ii) tringles can be drawn joining the points.
- 12. Evaluate $\int \sqrt{1 x^2} \, dx$; |x| < 1.
- 13. In triangle $\triangle ABC$, prove that $\cos C = \frac{a^2 + b^2 c^2}{2ab}$, where a,b,c has the usual meaning and $C = 90^\circ$.

14. Verify whether the system of linear equations 3x + 4y = 7, and 6x + 8y = 13 is consistent.

15. Prove that
$$\sin^{-1}\frac{3}{5} + \csc^{-1}\frac{5}{4} = \frac{\pi}{2}$$
.

III. Answer **any six** questions $6 \times 5 = 30$

1. Find the matrix X from the equation AX = B where $A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 1 & 1 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 2 \\ 1 \\ 7 \end{pmatrix}$. 2. Prove that the determinant $\begin{vmatrix} 2ab & a^2 & b^2 \\ a^2 & b^2 & 2ab \\ b^2 & 2ab & a^2 \end{vmatrix} = -(a^3 + b^3)^2$.

- 3. A group of 5 members is to form out of 6 men and 4 women. In how many ways this group can be formed if each group consists of at least one woman?
- 4. If $x = -1 + i\sqrt{2}$, find the value of $x^4 + 4x^3 + 6x^2 + 4x + 11$.
- 5. If the numbers a, b, c are in A.P and x, y, z are in G.P.Show that $x^{b-c} \times y^{c-a} \times z^{a-b} = 1$.
- 6. Show that the rectangle inscribed in a circle has maximum area when it is a square.

Please Turn Over

7. Evaluate (i) $\lim_{x \to 0} \frac{x^2 \sin \frac{1}{x}}{\sin x}.$

(ii)
$$\lim_{x \to 1} \frac{x^2 - 3x + 2}{x^2 - 4x + 3}$$

8. For what value/values of **a** the following system of linear equations are consistent ?

$$x - y + z = 1$$

$$x + 2y + 4z = a$$

$$x + 4y + 6z = a2$$