16397-BCA-I-Com-Fun-Soft-GE-01-19-E.docx

Course Code : BCA-GE-01

BCA-I/BCA-GE-01/19

BCA 1st Semester (Honours) Examination, 2019-20 (CBCS) BACHELOR OF COMPUTER APPLICATION

Course ID : 13514

Course Title : Mathematics-I

Time: 3 Hours

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Group-A

1. Answer <i>all</i> the questions:	
(i) If A be an orthogonal matrix, then A^{-1} will be	
(a) <i>A</i>	(b) A^2
(c) A^T	(d) A^{3}
(e) None of these	
(ii) The conic $\frac{8}{r} = 4 - 5 \cos \theta$ represents	
(a) a parabola	(b) an ellipse
(c) a hyperbola	(d) a circle
(e) None of these	
(iii) If $x = \cos \theta + i \sin \theta$, then $x^n - 1/x^n$ is equals	sto
(a) $2i\sin n\theta$	(b) $2i\cos n\theta$
(c) $2\sin n\theta$	(d) $2\cos\theta$
(e) None of these	
(iv) If $A = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ then	
(a) $AB = 0$	(b) $BA = 0$
(c) $AB = BA = 0$	(d) $AB \neq BA$
(e) None of these	
(v) If $f(x) = x^3 - 3x^2 + 4x - 3$ then $f(\sqrt{2})$ is	
(a) $6\sqrt{2}$	(b) $6\sqrt{2} - 9$
(c) 9	(d) $6\sqrt{2} + 9$
(e) None of the above	
(vi) If $\vec{a} = 2\vec{i} - \vec{j}$ and $\vec{b} = 3\vec{i} - 2\vec{j} + 4\vec{k}$ then value of $\vec{a} \times \vec{b}$ is	
(a) $4\vec{\iota} - 8\vec{j} - \vec{k}$	(b) $-4\vec{\iota}-8\vec{j}+\vec{k}$
(c) $4\vec{\iota} - 8\vec{j} + \vec{k}$	(d) $-4\vec{\iota}-8\vec{j}-\vec{k}$
(e) None of these	

Full Marks: 80

1×10=10

(vii) The modulus of the complex numbers $\sqrt{12} + 6\left(\frac{1-i}{1+i}\right)$ is (b) 4√3 (a) 4 (c) $6\sqrt{3}$ (d) $\sqrt{3}$ (e) None of these (viii) If $A \subseteq B$ and $B \subseteq A$ then (b) A = B(a) $A = \phi$ (c) $B \neq \phi$ (d) $A \cap B = \phi$ (e) None of these (ix) If α , β , γ are the roots of the equation $x^2 - px + q = 0$ then $\sum \frac{1}{\alpha} =$ (a) p/q(b) q/p(c) *p* (d) q (e) None of these (x) The centre of the circle $2x^2 + 2y^2 + \frac{5}{2}x - \frac{7}{2}y + 3 = 0$ is (a) $\left(\frac{5}{2}, -\frac{7}{2}\right)$ (b) $\left(-\frac{5}{4}, \frac{7}{4}\right)$ (c) $\left(-\frac{5}{2}, \frac{7}{2}\right)$ (d) $(5/_4, -7/_4)$ (e) None of these

Group-B

2. Answer *any ten* questions:

- (a) If $x = \{0, 1\}$ and $y = \{1, 2\}$ find $x \times y$.
- (b) If $A = \{x : -10 \le x \le 10\}$ and $B = \{y : 0 \le y \le 20\}$ find $A \cup B$ and A B.
- (c) What is mapping?
- (d) Find the value of $\sqrt{-3 + \sqrt{-3 + \sqrt{-3 + \cdots}}}$
- (e) Find the Polynomial $3x^3 4x^2 + 5x + 6$ as a polynomial of (x + 1).
- (f) Find the value of i^i .
- (g) Form the equation whose roots are 8 and 9.
- (h) If $A = \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix}$ then evaluate $A^2 5A$.
- (i) Find the nature of the conic $3x^2 + 2xy + 3y^2 16x + 20 = 0$
- (j) State the Descarte's rule of signs.
- (k) Find $(\vec{i} + 2\vec{j} + 3\vec{k}) \times (2\vec{i} + \vec{j} \vec{k})$
- (1) If $|\vec{A} + \vec{B}| = 60$, $|\vec{A} \vec{B}| = 40$ and $|\vec{B}| = 46$ then find the value of $|\vec{A}|$.

2×10=20

(m) Find the value of determinant $\begin{vmatrix} 265 & 240 & 219 \\ 240 & 225 & 198 \\ 219 & 198 & 181 \end{vmatrix}$.

- (n) If $x + 1/x = 2 \cos \pi/7$ then find the value of $x^7 + 1/x^7$.
- (o) Find the set of vectors (1, 2, 3), (2, -1, 4) and (-1, 8, 1).

Group-C

3. Answer *any four* questions:

(a) Show that the function $f : R \to R$ defined by $f(x) = x^3 + x$ is bijective, where R is the set of real numbers.

(b) Prove that
$$\begin{vmatrix} -2a & a+b & a+c \\ b+a & -2b & b+c \\ c+a & c+b & -2c \end{vmatrix} = 4(a+b)(b+c)(c+a)$$

- (c) Solve by Cramer's rule: x + 2y + 3z = 6, 2x + 4y + z = 7, 3x + 2y + 9z = 14.
- (d) If $A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ then find A^2 and show that $A^2 = A^{-1}$.
- (e) Solve by matrix method, the equations x + y + z = 8, x y + 2z = 6, 3x + 5y 7 = 14.
- (f) Show that the mapping $f : Q \to Q$ defined by f(x) = 3x + 2 is one-one onto, where Q is the set of rational numbers. Also find a formula for f^{-1} .

Group-D

- 4. Answer *any three* questions:
 - (a) (i) Define Ring. Explain the property of ring.
 - (ii) Prove that A field is an integral domain.
 - (b) (i) If α, β, γ be the roots of the equation $x^3 px^2 + qx r = 0$, then form the equation whose roots are $\beta\gamma + 1/\alpha, \gamma\alpha + 1/\beta, \alpha\beta + 1/\gamma$.
 - (ii) Solve $x^3 18x 35 = 0$ by Cardan's method.
 - (c) Show that a triangle the perpendiculars drawn from the vertices to the opposite sides are concurrent.
 - (d) Find the general equation of a parabola.
 - (e) Find the equations of the tangents to the conic $x^2 + 4xy + 3y^2 5x 6y + 3 = 0$ which are parallel to the straight line x + 4y = 0.
 - (f) Find the nature of the conic $l/r = 1 + e \cos \theta$.

(3)

 $10 \times 3 = 30$

5×4=20