BCA 1st Semester (Honours) Examination, 2019-20 (CBCS) BACHELOR OF COMPUTER APPLICATION

Course ID : 13514

Course Code : BCA-GE-01

Course Title : Mathematics-I

Time: 3 Hours
Full Marks: 80
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Group-A

1. Answer all the questions:
(i) If A be an orthogonal matrix, then A^{-1} will be
(a) A
(b) A^{2}
(c) A^{T}
(d) A^{3}
(e) None of these
(ii) The conic $8 / r=4-5 \cos \theta$ represents
(a) a parabola
(b) an ellipse
(c) a hyperbola
(d) a circle
(e) None of these
(iii) If $x=\cos \theta+i \sin \theta$, then $x^{n}-1 / x^{n}$ is equals to
(a) $2 i \sin n \theta$
(b) $2 i \cos n \theta$
(c) $2 \sin n \theta$
(d) $2 \cos \theta$
(e) None of these
(iv) If $A=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$ and $B=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ then
(a) $A B=0$
(b) $B A=0$
(c) $A B=B A=0$
(d) $A B \neq B A$
(e) None of these
(v) If $f(x)=x^{3}-3 x^{2}+4 x-3$ then $f(\sqrt{ } 2)$ is
(a) $6 \sqrt{2}$
(b) $6 \sqrt{2}-9$
(c) 9
(d) $6 \sqrt{2}+9$
(e) None of the above
(vi) If $\vec{a}=2 \vec{\imath}-\vec{\jmath}$ and $\vec{b}=3 \vec{\imath}-2 \vec{\jmath}+4 \vec{k}$ then value of $\vec{a} \times \vec{b}$ is
(a) $4 \vec{\imath}-8 \vec{\jmath}-\vec{k}$
(b) $-4 \vec{\imath}-8 \vec{\jmath}+\vec{k}$
(c) $4 \vec{\imath}-8 \vec{\jmath}+\vec{k}$
(d) $-4 \vec{\imath}-8 \vec{\jmath}-\vec{k}$
(e) None of these
(vii) The modulus of the complex numbers $\sqrt{12}+6\left(\frac{1-i}{1+i}\right)$ is
(a) 4
(b) $4 \sqrt{3}$
(c) $6 \sqrt{3}$
(d) $\sqrt{3}$
(e) None of these
(viii) If $A \subseteq B$ and $B \subseteq A$ then
(a) $A=\phi$
(b) $A=B$
(c) $B \neq \phi$
(d) $A \cap B=\phi$
(e) None of these
(ix) If α, β, γ are the roots of the equation $x^{2}-p x+q=0$ then $\sum^{1} / \alpha=$
(a) p / q
(b) q / p
(c) p
(d) q
(e) None of these
(x) The centre of the circle $2 x^{2}+2 y^{2}+5 / 2 x-7 / 2 y+3=0$ is
(a) $(5 / 2,-7 / 2)$
(b) $(-5 / 4,7 / 4)$
(c) $(-5 / 2,7 / 2)$
(d) $(5 / 4,-7 / 4)$
(e) None of these

Group-B

2. Answer any ten questions:
(a) If $x=\{0,1\}$ and $y=\{1,2\}$ find $x \times y$.
(b) If $A=\{x:-10 \leq x \leq 10\}$ and $B=\{y: 0 \leq y \leq 20\}$ find $A \cup B$ and $A-B$.
(c) What is mapping?
(d) Find the value of $\sqrt{-3+\sqrt{-3+\sqrt{-3+\cdots}}}$
(e) Find the Polynomial $3 x^{3}-4 x^{2}+5 x+6$ as a polynomial of $(x+1)$.
(f) Find the value of i^{i}.
(g) Form the equation whose roots are 8 and 9 .
(h) If $A=\left(\begin{array}{cc}2 & -1 \\ 1 & 3\end{array}\right)$ then evaluate $A^{2}-5 A$.
(i) Find the nature of the conic $3 x^{2}+2 x y+3 y^{2}-16 x+20=0$
(j) State the Descarte's rule of signs.
(k) Find $(\vec{\imath}+2 \vec{\jmath}+3 \vec{k}) \times(2 \vec{\imath}+\vec{\jmath}-\vec{k})$
(1) If $|\vec{A}+\vec{B}|=60,|\vec{A}-\vec{B}|=40$ and $|\vec{B}|=46$ then find the value of $|\vec{A}|$.
(m) Find the value of determinant $\left|\begin{array}{lll}265 & 240 & 219 \\ 240 & 225 & 198 \\ 219 & 198 & 181\end{array}\right|$.
(n) If $x+1 / x=2 \cos \pi / 7$ then find the value of $x^{7}+1 / x^{7}$.
(o) Find the set of vectors $(1,2,3),(2,-1,4)$ and $(-1,8,1)$.

Group-C

3. Answer any four questions:
$5 \times 4=20$
(a) Show that the function $f: R \rightarrow R$ defined by $f(x)=x^{3}+x$ is bijective, where R is the set of real numbers.
(b) Prove that $\left|\begin{array}{ccc}-2 a & a+b & a+c \\ b+a & -2 b & b+c \\ c+a & c+b & -2 c\end{array}\right|=4(a+b)(b+c)(c+a)$
(c) Solve by Cramer's rule: $x+2 y+3 z=6,2 x+4 y+z=7,3 x+2 y+9 z=14$.
(d) If $A=\left(\begin{array}{ccc}1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0\end{array}\right)$ then find A^{2} and show that $A^{2}=A^{-1}$.
(e) Solve by matrix method, the equations $x+y+z=8, x-y+2 z=6,3 x+5 y-7=14$.
(f) Show that the mapping $f: Q \rightarrow Q$ defined by $f(x)=3 x+2$ is one-one onto, where Q is the set of rational numbers. Also find a formula for f^{-1}.

Group-D

4. Answer any three questions:
(a) (i) Define Ring. Explain the property of ring.
(ii) Prove that A field is an integral domain.
(b) (i) If α, β, γ be the roots of the equation $x^{3}-p x^{2}+q x-r=0$, then form the equation whose roots are $\beta \gamma+1 / \alpha, \gamma \alpha+1 / \beta, \alpha \beta+1 / \gamma$.
(ii) Solve $x^{3}-18 x-35=0$ by Cardan's method.
(c) Show that a triangle the perpendiculars drawn from the vertices to the opposite sides are concurrent.
(d) Find the general equation of a parabola.
(e) Find the equations of the tangents to the conic $x^{2}+4 x y+3 y^{2}-5 x-6 y+3=0$ which are parallel to the straight line $x+4 y=0$.
(f) Find the nature of the conic $l / r=1+e \cos \theta$.
