BCA 1 ${ }^{\text {st }}$ Semester (Honours) Examination, 2021
 BACHELOR OF COMPUTER APPLICATION

Course ID : 13314
Course Code : BCA-GE-01

Course Title : Mathematics-I

Time : $\mathbf{3}$ Hours
The figure in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Group-A

1. Answer all the questions from the following. Choose Correct Options: $10 \times 1=10$
i. The value of $\frac{(\cos 3 \theta+i \sin 3 \theta)^{7}(\cos 5 \theta-i \sin 5 \theta)^{4}}{(\cos 4 \theta+i \sin 4 \theta)^{10}(\cos 13 \theta-i \sin 13 \theta)^{3}}$ is
a) 0
b) 1
c) -1
d) None of these
ii. The remainder when $4 x^{4}-10 x^{2}+1$ is divided by $x-2$ is
a) 15
b) 10
c) 25
d) None of these
iii. The solution of the equation $\left|\begin{array}{ccc}x-2 & 2 & 5 \\ x-7 & 3 & 6 \\ 2 x-6 & 4 & 7\end{array}\right|=0$ is given by
a) $x=6$
b) $x=-6$
c) $x=0$
d) None of these
iv. The set of non-zero real numbers w.r.t. usual multiplication is
a) not a group
b) a non-abelian group
c) an abelian group
d) None of these
\mathbf{v}. The transformed equation of $\frac{x}{3}+\frac{y}{4}=2$ when the origin is transferred to the point $(3,4)$ is
a) $\frac{x}{4}+\frac{y}{3}=0$
b) $\frac{x}{3}+\frac{y}{4}=0$
c) $\frac{x}{3}-\frac{y}{4}=0$
d) None of these
vi. The centre of the conic given by $3 x^{2}-8 x y+7 y^{2}-4 x+2 y-7=0$, is
a) $(1,1)$
b) $(1,2)$
c) $(2,1)$
d) None of these
vii. The values of λ and μ for which the vectors
$3 \hat{\imath}+4 \hat{\jmath}+\lambda \widehat{k}$ and $\mu \hat{\imath}+8 \hat{\jmath}+6 \widehat{k}$ are collinear is given by
а) $\lambda=3, \mu=-6$
b) $\lambda=3, \mu=6$
c) $\lambda=6, \mu=3$
d) None of these
viii. The set of real numbers R with respect to usual addition and multification is
a) not form a vector space over the set of reals R
b) not form a vector space over the set of rational Q
c) not form a vector space over the set of complex c
d) None of these
ix. The set of numbers of the form $a+b \sqrt{2}$, where a and b are rational number, w.r.t usual addition and multiplication is
a) a field
b) not a Ring
c) not a field
d) None of these
x. if $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, then
a) A and B both singular b) A and B both non-singular $c) A$ is singular and B is non-singular d) None of these.

Group-B

2. Answer any ten questions from the following.

i. Prove that $\frac{z-i}{z-1}$ is purely imaginary then the point z lies on the circle whose centre is at the point $\frac{1}{2}(1+i)$ and radius is $\frac{1}{\sqrt{2}}$
ii. Find the cube roots of unity.
iii. Divide $x^{6}-x^{4}+x^{3}+5 x+6$ by $x^{2}-2 x+3$, by synthetic devision.
iv. Without expending, show that $\left|\begin{array}{lll}2 & 0 & 1 \\ 1 & 3 & 0 \\ 0 & 1 & 4\end{array}\right|=\left|\begin{array}{lll}0 & 1 & 2 \\ 3 & 0 & 1 \\ 1 & 4 & 0\end{array}\right|$
v. Determine the matrices A and B where $A+2 B=\left[\begin{array}{ccc}1 & 2 & 0 \\ 6 & -3 & 3 \\ -5 & 3 & 1\end{array}\right]$ and $2 A-B=\left[\begin{array}{ccc}2 & -1 & 5 \\ 2 & -1 & 6 \\ 0 & 1 & 2\end{array}\right]$
vi. If $A=\{1,2,3\}, B=\{3,4,5,6\}$ and $c=\{1,2,7,5\}$ find $(A X B) \cap(B \times C)$
vii. Let $f: R \rightarrow R$ (set of reals) be defined by $f(x)=x^{2}+x-2$ find $f^{-1}(10)$ and $f(f(-2))$
viii. Do the set of integers form a multiplicative group?
ix. Find the nature of the conic $\frac{8}{r}=4-5 \cos \theta$
x. Find the angle of rotation of the coordinate axes about the origin which will transform the equation

$$
x^{2}-y^{2}=4 \text { to } x^{\prime} y^{\prime}=2
$$

xi. Show that the curve $4 x^{2}-4 x y+y^{2}-8 x-6 y+5=0$ has no centre.
xii. Find a unit vectors parallel to the resultant of two vectors $4 \hat{\imath}+2 \hat{\jmath}-5 \hat{k}$ and $2 \hat{\imath}+\hat{\jmath}+3 \hat{k}$
xiii. Are the vectors $\hat{\imath}+\hat{k}, 2 \hat{\jmath}+4 \widehat{k}$, and $-\hat{\imath}+\hat{\jmath}+\hat{k}$ coplanar?
xiv. Find the equation whose roots are $2 \pm \sqrt{3}, 5 \pm \sqrt{6}$
$\mathbf{x v}$. Find the conditions that the roots of the equation $x^{3}-p x^{2}+q x-r=0$ will be G.P.

Group-C

3. Answer any four questions from the following.

i. Solve $8 x^{3}-36 x^{2}+42 x-5=0$ by Cardan's Method .
ii. Solve by Cramer's rule

$$
\begin{aligned}
& -x+y+z=2 \\
& 2 x-y+3 z=4 \\
& 3 x+2 y-6 z=1
\end{aligned}
$$

iii. Let T be the linear transformation on R^{3} to R^{3} defined by $T(x, y, z)=(2 x, 4 x-y, 2 x+3 y-z)$. Show that T is invertible and find T^{-1}
iv. Define 'Ring' and show that the set of all even integers form a commutative ring.
v. Reduce the equation $7 x^{2}-6 x y-y^{2}+4 x-4 y-2=0$ to the canonical form and find the nature of the conic.
vi. Prove by vector method, that the medians of a triangle are concurrent.

Group-D

4. Answer any three questions from the following.
a. i. Show that the vectors $-5 \vec{a}-12 \vec{b}+4 \vec{c}, 4 \vec{a}-5 \vec{b}+8 \vec{c}$ and $13 \vec{a}+2 \vec{b}+12 \vec{c}$ are collinear.
ii. If the diagonals of a quadrilateral bisects each other, show, by vector method, the figure is parallelogram.
b. i. Find the point on the conic $\frac{l}{r}=1-\cos \theta$ which has the smallest radius vector.
ii. Find where the origin is to be shifted without changing the direction of the axes in order that the terms in x and may be removed from the equation $x^{2}-y^{2}-8 x-6 y+7=0$
c. i. Solve the equation $x^{4}-12 x^{3}+48 x^{2}-72 x+35=0$ by removing the second term.
ii. Show that $x^{7}+5 x^{4}-3 x+k=0$ has at least four imaginary roots.
d. i. Show that product of all values of $(1+i \sqrt{3})^{3 / 4}$ is 8 .
ii. Solve: $x^{7}-1=0$
e. i. Find the values of x, y, z, t for which the matrices $\left[\begin{array}{ll}x+y & y-t \\ z+t & x+z\end{array}\right]$ and $\left[\begin{array}{ll}y-z & x-z \\ 2+t & 3+y\end{array}\right]$ may be equal. ii. find the inverse of $\left[\begin{array}{ccc}2 & 4 & 3 \\ 0 & 1 & 1 \\ 2 & 2 & -1\end{array}\right]$
f. i. Let the Linear transformations T_{1} and T_{2} from $R^{2} \rightarrow R^{2}$ defined by $T 1(x, y)=(y,-x)$ and $T_{2}(x, y)=(y, 0)$ Find the formula to define the mappings $T_{1} T_{2}$ and $T_{1} T_{2}-T_{2} T_{1}$
ii. Show that the set of all polynomial in X over a field F of degree $\leq \mathrm{n}$ is a subspace of the vector space of all polynomials over F.
