BCA 1st Semester (Honours) Examination, 2021 BACHELOR OF COMPUTER APPLICATION

Course ID : 13314

Course Title : Mathematics-I

Time : 3 Hours

The figure in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Group-A

1. Answer <u>all</u> th	e questions fro	m the following	. Choose Correct Opti	ons:	10 X 1 = 10
i. The value of $\frac{(\cos 3\theta + i \sin 3\theta)^7 (\cos 5\theta - i \sin 5\theta)^4}{(\cos 4\theta + i \sin 4\theta)^{10} (\cos 13\theta + i \sin 13\theta)^3}$ is					
a) 0 b) 1	c) -1 d) Non	e of these	,		
ii. The remainder when 4x ⁴ – 10x ² + 1 is divided by x-2 is					
a) 15	b) 10	c) 25	d) None of these		
iii. The solution a) x=6	of the equation b) x=-6	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{vmatrix} 5 \\ 6 \\ 7 \end{vmatrix} = 0 \text{ is given by}$ d) None of these		
iv. The set of non-zero real numbers w.r.t. usual multiplication is					
a) not a group	b) a no	n-abelian group	c) an abelian gi	oup	d) None of these
v. The transformed equation of $\frac{x}{3} + \frac{y}{4} = 2$ when the origin is transferred to the point (3,4) is a) $\frac{x}{4} + \frac{y}{3} = 0$ b) $\frac{x}{3} + \frac{y}{4} = 0$ c) $\frac{x}{3} - \frac{y}{4} = 0$ d) None of these					
vi. The centre of the conic given by $3x^2 - 8xy + 7y^2 - 4x + 2y - 7 = 0$, isa) (1,1)b) (1,2)c) (2,1)d) None of these					
vii. The values of λ and μ for which the vectors $3\hat{\iota} + 4\hat{j} + \lambda \hat{k}$ and $\mu \hat{\iota} + 8\hat{j} + 6\hat{k}$ are collinear is given by					
a) λ = 3 , μ=-6	b) λ =3	, μ=6	c) λ =6, μ =3	d) None of thes	e
 viii. The set of real numbers R with respect to usual addition and multification is a) not form a vector space over the set of reals R b) not form a vector space over the set of rational Q c) not form a vector space over the set of complex c d) None of these 					
ix. The set of numbers of the form $a + b\sqrt{2}$, where a and b are rational number, w.r.t usual addition and multiplication is					

a) a field b) not a Ring c) not a field d) None of these

x. if $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then

a) A and B both singular b) A and B both non-singular c) A is singular and B is non-singular d) None of these.

Course Code : BCA-GE-01

Full Marks: 80

Group-B

2. Answer any ten questions from the following.

 $\frac{1}{2}(1+i)$ and radius is $\frac{1}{\sqrt{2}}$

ii. Find the cube roots of unity.

- iii. Divide $x^6 x^4 + x^3 + 5x + 6$ by $x^2 2x + 3$, by synthetic devision.
- iv. Without expending, show that $\begin{vmatrix} 2 & 0 & 1 \\ 1 & 3 & 0 \\ 0 & 1 & 4 \end{vmatrix} = \begin{vmatrix} 0 & 1 & 2 \\ 3 & 0 & 1 \\ 1 & 4 & 0 \end{vmatrix}$
- **v.** Determine the matrices A and B where $A + 2B = \begin{bmatrix} 1 & 2 & 0 \\ 6 & -3 & 3 \\ -5 & 3 & 1 \end{bmatrix}$ and $2A B = \begin{bmatrix} 2 & -1 & 5 \\ 2 & -1 & 6 \\ 0 & 1 & 2 \end{bmatrix}$
- vi. If A={1,2,3}, B={3,4,5,6} and c={1,2,7,5} find (A X B) ∩ (B X C)
- vii. Let $f: R \to R(set \ of \ reals)$ be defined by $f(x) = x^2 + x 2$ find $f^{-1}(10)$ and f(f(-2))
- viii. Do the set of integers form a multiplicative group?
- **ix.** Find the nature of the conic $\frac{8}{\pi} = 4 5 \cos \theta$
- x. Find the angle of rotation of the coordinate axes about the origin which will transform the equation $x^2 - y^2 = 4$ to x'y' = 2
- **xi.** Show that the curve $4x^2 4xy + y^2 8x 6y + 5 = 0$ has no centre.
- **xii.** Find a unit vectors parallel to the resultant of two vectors $4\hat{i} + 2\hat{j} 5\hat{k}$ and $2\hat{i} + \hat{j} + 3\hat{k}$
- **xiii.** Are the vectors $\hat{i} + \hat{k}$, $2\hat{j} + 4\hat{k}$, $and \hat{i} + \hat{j} + \hat{k}$ coplanar?
- **xiv.** Find the equation whose roots are $2 \pm \sqrt{3}$, $5 \pm \sqrt{6}$
- **xv.** Find the conditions that the roots of the equation $x^3 px^2 + qx r = 0$ will be G.P.

Group-C

3. Answer any four questions from the following.

- i. Solve $8x^3 36x^2 + 42x 5 = 0$ by Cardan's Method.
- ii. Solve by Cramer's rule

$$-x + y + z = 2$$

 $2x - y + 3z = 4$
 $3x + 2y - 6z = 1$

iii. Let T be the linear transformation on R³ to R³ defined by T(x,y,z) = (2x, 4x-y, 2x+3y-z). Show that T is invertible and find T⁻¹

iv. Define 'Ring' and show that the set of all even integers form a commutative ring.

v. Reduce the equation $7x^2 - 6xy - y^2 + 4x - 4y - 2 = 0$ to the canonical form and find the nature of the conic.

vi. Prove by vector method, that the medians of a triangle are concurrent.

5 X 4 = 20

Group-D

4. Answer any three questions from the following.

a. i. Show that the vectors $-5\vec{a} - 12\vec{b} + 4\vec{c}$, $4\vec{a} - 5\vec{b} + 8\vec{c}$ and $13\vec{a} + 2\vec{b} + 12\vec{c}$ are collinear.

ii. If the diagonals of a quadrilateral bisects each other, show, by vector method, the figure is parallelogram.

b. i. Find the point on the conic $\frac{l}{r} = 1 - \cos \theta$ which has the smallest radius vector.

ii. Find where the origin is to be shifted without changing the direction of the axes in order that the terms in x and may be removed from the equation $x^2 - y^2 - 8x - 6y + 7 = 0$

- **c.** i. Solve the equation $x^4 12x^3 + 48x^2 72x + 35 = 0$ by removing the second term.
- ii. Show that $x^7 + 5x^4 3x + k = 0$ has at least four imaginary roots.
- **d.** i. Show that product of all values of $(1 + i\sqrt{3})^{3/4}$ is 8.
 - ii. Solve: $x^7 1 = 0$

e. i. Find the values of x, y, z, t for which the matrices $\begin{bmatrix} x+y & y-t \\ z+t & x+z \end{bmatrix}$ and $\begin{bmatrix} y-z & x-z \\ 2+t & 3+y \end{bmatrix}$ may be equal.

ii. find the inverse of
$$\begin{bmatrix} 2 & 4 & 3 \\ 0 & 1 & 1 \\ 2 & 2 & -1 \end{bmatrix}$$

f. i. Let the Linear transformations T_1 and T_2 from $R^2 \rightarrow R^2$ defined by T1(x,y)=(y,-x) and $T_2(x,y)=(y,0)$ Find the formula to define the mappings T_1T_2 and $T_1T_2 - T_2T_1$

ii. Show that the set of all polynomial in X over a field F of degree \leq n is a subspace of the vector space of all polynomials over F.