(g) Find the sum of the series $x(x+y)+x^{2}\left(x^{2}+y^{2}\right)+x^{3}\left(x^{3}+y^{3}\right)+\ldots$ upto n terms.
(h) Find out the limit $\lim _{x \rightarrow 0} \frac{\sin ^{2} a x}{\sin ^{2} b x}$
(i) If $(1+\mathrm{i})(1+2 \mathrm{i})(1+3 \mathrm{i}) \ldots(1+\mathrm{ni})=(\mathrm{x}+\mathrm{iy})$, show that 2.5 .10 $\ldots . .\left(1+n^{2}\right)=x^{2}+y^{2}$
(j) Construct a 2×2 matrix $\mathrm{A}=\left(\mathrm{a}_{\mathrm{ij}}\right)$ whose elements are given by $\mathrm{a}_{\mathrm{ij}}=\frac{i}{j}$
(k) Using binomial theorem, compute (98) ${ }^{5}$.
(1) suppose two boats leave a place at the same time. One travels 56 km in the direction $\mathrm{N} 50^{\circ} \mathrm{E}$,
(m) If x, y, z are in arithmetic progression, then find the

$$
\text { value of the determinant }\left|\begin{array}{lll}
a+2 & a+3 & a+2 x \\
a+3 & a+4 & a+2 y \\
a+4 & a+5 & a+2 z
\end{array}\right|
$$

B.Sc. 1st Semester (Honours) Examination, 2022-23

 FORESTRYCOURSE ID: 13508 COURSE CODE: SH/FST/BS 1104

COURSE TITLE: Forest Botany

Time : 2 Hours
Full Marks : 50
The figures in the right hand margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.
I. Write a definition or one sentence answer any Ten of the followings :

1. What is vascular criptogams.
2. Meristematic tissue
3. What is amphibious plant
4. Mention two gymnosperm plant
5. Mention living cell of xylem tissue
6. Root cap
7. Draw valvate aestivation
8. Albuminous cell
9. Mention a modified leaf
10. Spongy parenchyma
11. What is stele
12. Reticulate venation
13. Conjoint vascular bundle
14. Annual Ring.
15. Prop root
II. Write short note/define any Ten of the followings :
$2 \times 10=20$
16. Actinomorphic and zygomorphic flower
17. Heterophylly
18. Floral formula
19. Floral diagram
20. Secondary meristematic tissue
(y) Evaluate $\int_{0}^{\frac{\pi}{4}} \tan ^{3} x d x$
21. Answwer any ten questions :

$$
2 \times 10=20
$$

(a) Prove that $\sin \alpha+\sin \left(\alpha+\frac{2 \pi}{3}\right)+\sin \left(\alpha+\frac{4 \pi}{3}\right)=0$.
(b) Show that the following system of equations is inconsistent : $2 \mathrm{x}+\mathrm{y}=3,4 \mathrm{x}+2 \mathrm{y}=5$.
(c) Find $\frac{d y}{d x}$, When $y=\frac{e^{x}+\log x}{\sin 3 x}$.
(d) Show that the function $f(x)=4 x^{3}-18 x^{2}+27 x-7$ has neither maxima nor minima.
(e) Show that the square roots of $-15-8 \mathrm{i}$.
(f) If the sum of n terms of an arithmetic progression is of the form $\mathrm{pn}+\mathrm{qn}^{2}$, where p and q are constants, then find the first term and common difference of the progression.
(o) Prove that $\operatorname{Sin}^{2} 6 x-\sin ^{2} 4 \mathrm{x}=\sin 2 \mathrm{x} \sin 10 \mathrm{x}$
(p) Find the sign of the expression $\sin 100^{\circ}+\cos 100^{\circ}$
(q) Find the cofactor of the element 1 in $\left(\begin{array}{ccc}2 & 3 & 3 \\ 1 & -2 & 2 \\ 3 & -1 & -2\end{array}\right)$
(r) Define homogeneous system of linear equations.
(s) Find the value of $x^{3}+7 x^{2}-x+16$, When $x=1+2 i$.
(t) Find the value of the $\lim _{x \rightarrow 1} \frac{x^{3}-1}{x-1}$.
(u) Find $\frac{d}{d x}\left(e^{\sqrt{a x+b}}\right)$.
(v) Find the value of $\tan 75^{\circ}$.
(w) Evaluate $\int \frac{d x}{1+\sin x}$
(x) Prove that $\cos 100^{\circ}+\cos 20^{\circ}=\cos 40^{\circ}$
6. Raceme
7. Bark
8. Lenticel
9. Function of xylem parenchyma
10. Petiole
11. Soft wood
12. Seed coat
13. Cork-cambium
14. Basal placentation
15. Function of vessel element
III. Write down in brief any four of the followings: $5 \times 4=20$

1. Types of vascular bundle
2. Economic importance of gymnosperm
3. Write the difference between monocot. stem \& dicot stem.
4. Seed dispersal mechanism of angiosperm
5. Draw and describe a mature ovule
6. Difference between Cymose \& racemose Inflorencence.

COURSE TITLE: Basic Mathematics

Full Marks : 70

1. Answwer any twenty questions :
(a) Find out the $\lim _{x \rightarrow 0} \frac{x}{|x|}$ (if exists).
(b) Find the 12th term of the arithmetic progression $\{-5,-3,-1, \ldots$.$\} .$
(c) Find the total number of ways of answering 10 objective type questions each question having four choices.
(d) Find the $\mathrm{n}^{\text {th }}$ term of the Geometric Progression $\sqrt{3}, \frac{1}{\sqrt{3}}, \frac{1}{3 \sqrt{3}}, \ldots$
(e) Which term of the sequence $\left\{2,1,2^{-1}, 4^{-1}, \ldots\right\}$ is 128^{-1} ?
(f) Find the value of $\frac{z_{1}}{z_{2}}$ Where $z_{1}=2+3 i \operatorname{and} z_{2}=1+2 i$.
(d) If $x \sqrt{1+y}+y \sqrt{1+x}=0$ for $-1<x<1$, then prove that

$$
\frac{d y}{d x}=-\frac{1}{(1+x)^{2}}
$$

(e) Evaluate $\int \frac{\cos x-\cos 2 x}{1-\cos x} d x$
(f) If $f^{\prime}(\mathrm{x})=\mathrm{x}+\frac{1}{x^{2}}$ and $f(3)=(4)$, then find $f(\mathrm{x})$.
(g) Find the minimum value of $4 \mathrm{e}^{2 \mathrm{x}}+9 \mathrm{e}^{-2 \mathrm{x}}$.
(h) Expand (1-3x) ${ }^{7}$ by binomial theorem.

and

The product of three numbers in arithmetic progressions is 224 , and the largest number is 7 times the smallest. Find the numbers. $2.5+2.5$
(n) Evaluate $\int_{0}^{a} \frac{d x}{\left(x^{2}+a^{2}\right)^{2}}$
(o) If the fourth term in the expansion of $\left(a x+\frac{1}{x}\right)^{n}$ is $\frac{5}{2}$, then find the value of a and n.
3. Answer any six questions :
$5 \times 6=30$
(a) Prove that $\left|\begin{array}{ccc}(b+c)^{2} & a^{2} & a^{2} \\ b^{2} & (c+a)^{2} & b^{2} \\ c^{2} & c^{2} & (a+b)^{2}\end{array}\right|=2 a b c(a+b+c)^{3}$
(b) Using Cramer's rule, solve the following system of linear equations
$2 \mathrm{x}-\mathrm{y}-\mathrm{z}=7, \quad 3 \mathrm{x}+\mathrm{y}-\mathrm{z}=7, \quad \mathrm{x}+\mathrm{y}-\mathrm{z}=3$
(c) Prove that

$$
\tan \left\{\frac{\pi}{4}+\frac{1}{2} \cos ^{-1} \frac{a}{b}\right\}+\tan \left\{\frac{\pi}{4}+\frac{1}{2} \cos ^{-1} \frac{a}{b}\right\}=\frac{2 b}{a}
$$

