BCA 1st Semester (Honours) Examination-2022-23
 BACHELOR OF COMPUTER APPLICATION (NEW SYLLABUS)
 Course ID : 13314 Course Code : GE-01
 Course Title : Mathematics-1

Time : 3 Hours
Full Marks : 80
The figures in the right hand margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Group - A

1. Answer all questions : $1 \times 10=10$
(a) If $z=-1+i$, then argument of z is
(i) $\frac{3 \pi}{4}$
(ii) $-\frac{3 \pi}{4}$
(iii) $\frac{3 \pi}{2}$
(iv) $-\frac{3 \pi}{2}$
(v) None of these
(b) Value of $\sqrt[3]{i}+\sqrt[3]{-i}$ is
(i) $\sqrt{3}$
(ii) $-\sqrt{3}$
(iii) $\frac{\sqrt{3}}{2}$
(iv) $-\frac{\sqrt{3}}{2}$
(v) None of these
(c) If a be a multiple root of 3 of the equation $x^{4}+b x^{2}+$
$c x+d=0,(d \neq 0)$, then a is
(i) $-\frac{7 d}{3 c}$
(ii) $-\frac{6 d}{5 c}$
(iii) $-\frac{8 d}{3 c}$
(iv) $\frac{8 d}{3 c}$
(v) None of these
(d) (i) Find the matrix A, if its adjoint is $\left[\begin{array}{ccc}-2 & 3 & 1 \\ 6 & -8 & -2 \\ -4 & 7 & 1\end{array}\right]$ and its determinant value is 2 .
(ii) If the value of a tetrahedron be 2 units and three of its vertices be $\mathrm{A}(1,1,0), \mathrm{B}(1,0,1), \mathrm{C}(2,-1,1)$, then find the locus of the fourth vertex.
(e) (i) Find the unit vector perpendicular to both $a=2 \hat{i}+3 \hat{j}-\hat{k}$, and $b=3 \hat{i}-\hat{j}+2 \hat{k}$. Find also the angle between them.
(ii) If $f: \mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$ be two mappings such that gof : $\mathrm{A} \rightarrow \mathrm{C}$ is surjective, then is it necessary f is surjective? Justify your answer.
(f) Identify the conic T given by $F=0$, where $F=9 x^{2}-$ $24 x y+16 y^{2}-18 x-101 y+19$ and determines its vertices and axes.
$2+4+4$
find the matrix of T relative to the ordered bases $((1,1,0),(1,0,1),(0,1,1))$ of \mathbb{R}^{3} and $((1,1),(0,1))$ of \mathbb{R}^{2}.

$$
5+2+3
$$

(b) (i) Use De Moivre's theorem to prove that, $\cos 5 \theta=16 \cos ^{5} \theta-20 \cos ^{3} \theta+5 \cos \theta$
(ii) Find the product of all the values of $(1+i)^{\frac{4}{5}}$ (iii) Solve $x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1=0$

$$
3+4+3
$$

(c) (i) If a, β, γ are the roots of $\mathrm{px}^{3}+3 \mathrm{qx}^{2}+3 \mathrm{rx}+\mathrm{s}=0$, find $\sum a^{3}$. $3+4+3$
(ii) Show that the determinant $\left|\begin{array}{ccc}a^{2} & 2 a b & b^{2} \\ b^{2} & a^{2} & 2 a b \\ 2 a b & b^{2} & a^{2}\end{array}\right|$ is a perfect square. $5+5$
(d) The nature of the roots of the equation $3 x^{4}+12 x^{2}+5 x-4=0$ is
(i) 2 real roots and 2 non-real roots
(ii) 1 real root and 3 non-real roots
(iii) 3 real roots and 1 non-real root
(iv) All non-real roots
(v) None of these
(e) If $1_{\mathrm{n}}=\left[0, \frac{1}{n}\right], \mathrm{n}, \in \mathbb{N}$, then $\bigcap_{n \notin \mathbb{N}} 1_{\mathrm{n}}$ equal to
(i) $\{0\}$
(ii) \varnothing
(iii) (i) and (ii) both
(iv) 0
(v) None of these
(f) If $1_{\mathrm{n}}=\left(0, \frac{1}{n}\right), \mathrm{n}, \in \mathbb{N}$, then $\bigcap_{n \in \mathbb{N}} 1_{\mathrm{n}}$ equal to
(i) (0)
(ii) \varnothing
(iii) (i) and (ii) both
(iv) 0
(v) None of these
(g) If $f=\left\{(\mathrm{x}, \mathrm{y}) \notin \mathbb{R} \times \mathbb{R}: y=\frac{1}{x}\right\}$, then
(i) f is a mapping from \mathbb{R} to \mathbb{R}
(ii) f is a mapping from \mathbb{N} to \mathbb{R}
(iii) f is not a mapping from \mathbb{R} to \mathbb{R}
(iv) f is not a mapping from \mathbb{N} to \mathbb{R}
(v) None of these
(e) Find $\operatorname{dim}(S \cap T)$, where S and T are subspaces of the vector space \mathbb{R}^{4} given by

$$
\begin{aligned}
& S=\left\{(x, y, z, w) \in \mathbb{R}^{4}: 2 x+y+3 z+w=0\right\} \\
& T=\left\{(x, y, z, w) \in \mathbb{R}^{4}: x+2 y+z+3 w=0\right\}
\end{aligned}
$$

(f) Reduce the equation $16 x^{2}-24 x y+9 y^{2}-104 x-172 y$ $+44=0$ to its canonical form and determine the nature of the conic. Find the equation of its axes.

Group - D

4. Answer any three questions :
$10 \times 3=30$
(a) (i) If V is a vector space of dimension n over a field F, then prove that any linear independent set of n vectors of V is a basis of V.
(ii) The matrix of a linear mapping $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ relative to the order bases $((0,1,1),(1,0,1),(1,1,0))$ of \mathbb{R}^{3} and $((1,0),(1,1))$ of \mathbb{R}^{2} is $\left(\begin{array}{lll}1 & 2 & 4 \\ 2 & 1 & 0\end{array}\right)$. Find T. Also

Group - C

3. Answer any four questions :
$5 \times 4=20$
(a) Find the vector area of the triangle, the position vectors of whose vertices are
$(\hat{i}+\hat{j}+2 \hat{k}),(2 \hat{i}+2 \hat{j}+3 \hat{k})$ and $(3 \hat{i}-\hat{j}-\hat{k})$.
(b) Show that
(i) $[a+\beta, \beta+\gamma, \gamma+a]=2[a \beta \gamma]$
(ii) $[a b c]^{2}=\left|\begin{array}{lll}a \cdot a & a \cdot b & a \cdot c \\ a \cdot b & b \cdot b & b \cdot c \\ a \cdot c & b \cdot c & c \cdot c\end{array}\right|$
(c) If H and K be finite subgroups of a group G such that $H K$ is a group of G, then prove that
$O(H K)=\frac{O(H) \cdot O(K)}{O(H \cap K)}$
(d) Examine if the ring of matrices $\left\{\left(\begin{array}{cc}a & b \\ 2 b a\end{array}\right): a, b \in \mathbb{R}\right\}$ is a
(h) If $G=\{-1,0,1\}$, then $(G,+)$
(i) Is a group
(ii) Is not a group
(iii) Is a semi-group
(iv) Is a monoid
(v) None of these
(i) If $\vec{a}, \vec{b}, \vec{c}$ are three vectors, then value of $\vec{a} \times(\vec{b} \times \vec{c})$ is
(i) $(\vec{a} \cdot \vec{c}) \cdot \vec{b}-(\vec{a} \cdot \vec{b}) \cdot \vec{c}$
(ii) $(\vec{a} \cdot \vec{b}) \cdot \vec{c}-(\vec{a} \cdot \vec{c}) \cdot \vec{b}$
(iii) $(\vec{b} \cdot \vec{c}) \cdot \vec{a}-(\vec{c} \cdot \vec{a}) \cdot \vec{b}$
(iv) $(\vec{a} \cdot \vec{c}) \cdot \vec{b}-(\vec{b} \cdot \vec{c}) \cdot \vec{a}$
(v) None of these
field.
(j) $(\mathbb{Z},+,$.$) is$
(i) A field
(ii) Not a field
(iii) A commutative skew field
(iv) A non-commutative skew field
(v) None of these

Group - B

2. Answer any ten question :
$2 \times 10=20$
(a) Find by Descarte's rule of sign, the nature of the roots of the equation $x^{n}=1, n$ being a natural number.
(b) Solve the equation $x^{3}-7 x^{2}+19 x-13=0$, given that one of its roots is $3+2 \mathrm{i}$.
(c) Find a complex number z for which $\mathrm{e}^{\mathrm{z}}=-\mathrm{i}$.
(d) Solve $z^{5}=1$, where z is a complex number.
(e) Write the subset of the set $\{x, y, z\}$.
(f) State with reason whether the mapping $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x|x|, \forall x \in \mathbb{R}$ is injective, or not.
(g) Does the set $\{-2,-1,0,1,2\}$ forms a group under usual addition? Justify your answer.
(h) In a group (G, o), a is an element of order 30. Find the order of a^{18}.
(i) Express $(5,2,1)$ as a linear combination of $(1,4,0)$, $(2,2,1)$ and $(3,0,1)$.
(j) Determine k, so that the vectors $(1,3,1),(2, k, 0)$ and $(0,1,4)$ are linearly dependent.
(k) Solve the equation $2 x^{3}-x^{2}-18 x+9=0$, if two of the roots are equal in magnitude but opposite in sign.
(1) Show that the vectors corresponding to the positions of the point $(3,-2,1)$ and $(2,3,0)$ are at right angles.
(m) Find the angle between planes

$$
\vec{r} \cdot(2 \hat{i}+3 \hat{j}+\hat{k})=7 \text { and } \vec{r} \cdot(3 \hat{i}-2 \hat{j}+5 \hat{k})=5
$$

(n) Transfer the equation $3(12 x-5 y+39)+2(5 x+12 y-26)^{2}=169$.
(o) Find the equation of the conic passing through the point of interesection of the straight lines $x-3 y-4=0$ and $x+y=0$ and the intersection of the conics $x^{2}-3 x y+y^{2}-6 x-4 y+5=0$ and $3 x^{2}+7 x y-3 y^{2}-14 x-2 y+23=0$.

