Total Pages—11

BCA 1st Semester (Honours) Examination-2022-23

BACHELOR OF COMPUTER APPLICATION

(NEW SYLLABUS)

Course ID : 13314 Course Code : GE-01

Course Title : Mathematics-1

Time : 3 HoursFull Marks : 80The figures in the right hand margin indicate full marks.Candidates are required to give their answers in their
own words as far as practicable.

Group - A

1. Answer **all** questions : $1 \times 10=10$ (a) If z = -1 + i, then argument of z is

(i)
$$\frac{3\pi}{4}$$

(ii) $-\frac{3\pi}{4}$
(iii) $\frac{3\pi}{2}$
(iv) $-\frac{3\pi}{2}$

(v) None of these

(b)	Value of $\sqrt[3]{i} + \sqrt[3]{-i}$ is		
	(i) $\sqrt{3}$	(d)	(i) Find the ma
	(ii) $-\sqrt{3}$		and its determi
	(iii) $\frac{\sqrt{3}}{2}$		(ii) If the value
	$(iv) - \frac{\sqrt{3}}{2}$		the locus of the
	(v) None of these	(e)	(i) Find the u $a = 2\hat{i} + 3\hat{j} - \hat{k}, a$
(c)	If a be a multiple root of 3 of the equation x^4 + bx^2 +		between them.
	$cx + d = 0$, $(d \neq 0)$, then a is		(ii) If $f: A \to B$ argof : $A \to C$ is
	(i) $-\frac{7d}{3c}$		surjective? Jus
	(ii) $-\frac{6d}{5c}$	(1)	Identify the con $24xy + 16y^2 -$
	(iii) $-\frac{8d}{3c}$		vertices and ax
	(iv) $\frac{8d}{3c}$		
	(v) None of these		

atrix A, if its adjoint is $\begin{bmatrix} -2 & 3 & 1 \\ 6 & -8 & -2 \\ -4 & 7 & 1 \end{bmatrix}$ inant value is 2. of a tetrahedron be 2 units and three A(1,1,0), B(1,0,1), C(2, -1,1), then find 5+5 he fourth vertex. unit vector perpendicular to both and $b = 3\hat{i} - \hat{j} + 2\hat{k}$. Find also the angle 3+2 nd g: $B \rightarrow C$ be two mappings such that surjective, then is it necessary f is stify your answer. nic T given by F = 0, where F = $9x^2$ – -18x - 10ly +19 and determines its 2+4+4xes.

22-23/13314

(Continued)

22-23/13314

(Turn Over)

10

find the matrix of T relative to the ordered bases

$$((1,1,0), (1,0,1), (0,1,1))$$
 of \mathbb{R}^3 and $((1,1), (0,1))$ of \mathbb{R}^2 .

5+2+3

- (b) (i) Use De Moivre's theorem to prove that, $\cos 5\theta = 16 \cos^5 \theta - 20 \cos^3 \theta + 5 \cos \theta$ (ii) Find the product of all the values of $(1+i)\frac{4}{5}$ (iii) Solve $x^6 + x^5 + x^4 + x^3 + x^2 + x + 1 = 0$ 3+4+3
- (c) (i) If a,β,γ are the roots of $px^3 + 3qx^2 + 3rx + s = 0$,

find
$$\sum a^3$$
. 3+4+3

(ii) Show that the determinant
$$\begin{vmatrix} a^2 & 2ab & b^2 \\ b^2 & a^2 & 2ab \\ 2ab & b^2 & a^2 \end{vmatrix}$$
 is a

perfect square.

5+5

(d) The nature of the roots of the equation $3x^4 + 12x^2 + 5x - 4 = 0$ is (i) 2 real roots and 2 non-real roots (ii) 1 real root and 3 non-real roots (iii) 3 real roots and 1 non-real root (iv) All non-real roots (v) None of these (e) If $l_n = \left[0, \frac{1}{n}\right]$, $n \in \mathbb{N}$, then $\bigcap_{n \notin \mathbb{N}} l_n$ equal to (i) {0} (ii) Ø (iii) (i) and (ii) both (iv) 0 (v) None of these

(f) If
$$l_n = \left(0, \frac{1}{n}\right)$$
, $n, \in \mathbb{N}$, then $\bigcap_{n \in \mathbb{N}} l_n$ equal to

4

(i) (0)

(ii) Ø

(iii)(i) and (ii) both

(iv) 0

(v) None of these

(g) If
$$f = \{(x, y) \notin \mathbb{R} \times \mathbb{R} : y = \frac{1}{x}\}$$
, then

- (i) f is a mapping from \mathbb{R} to \mathbb{R}
- (ii) f is a mapping from \mathbb{N} to \mathbb{R}
- (iii) f is not a mapping from \mathbb{R} to \mathbb{R}
- (iv) f is not a mapping from \mathbb{N} to \mathbb{R}
- (v) None of these

9

(e) Find dim $(S \cap T)$, where S and T are subspaces of the

vector space \mathbb{R}^4 given by

 $S = \{(x, y, z, w) \in \mathbb{R}^4 : 2x + y + 3z + w = 0\}$

 $T = \left\{ \left(x, y, z, w \right) \in \mathbb{R}^4 : x + 2y + z + 3w = 0 \right\}$

(f) Reduce the equation 16x² - 24xy + 9y² - 104x - 172y
+ 44 = 0 to its canonical form and determine the nature of the conic. Find the equation of its axes.
2+3

Group – D

- **4.** Answer **any** *three* questions : $10 \times 3=30$
 - (a) (i) If V is a vector space of dimension n over a field F, then prove that any linear independent set of n vectors of V is a basis of V.

(ii) The matrix of a linear mapping $T: \mathbb{R}^3 \to \mathbb{R}^2$

relative to the order bases ((0,1,1), (1,0,1), (1,1,0)) of \mathbb{R}^3 and ((1,0), (1,1)) of \mathbb{R}^2 is $\begin{pmatrix} 1 & 2 & 4 \\ 2 & 1 & 0 \end{pmatrix}$. Find *T*. Also

22-23/13314

(Continued)

22-23/13314

(Turn Over)

Group – C

- **3.** Answer **any** *four* questions : 5×4=20
 - (a) Find the vector area of the triangle, the position vectors of whose vertices are

$$(\hat{i}+\hat{j}+2\hat{k}),(2\hat{i}+2\hat{j}+3\hat{k})$$
 and $(3\hat{i}-\hat{j}-\hat{k}).$

(b) Show that

(i)
$$[a+\beta, \beta+\gamma, \gamma+a] = 2[a\beta\gamma]$$

(ii)
$$[abc]^2 = \begin{vmatrix} a . a & a . b & a . c \\ a . b & b . b & b . c \\ a . c & b . c & c . c \end{vmatrix}$$
 3+2

(c) If H and K be finite subgroups of a group G such that HK is a group of G, then prove that

$$O(HK) = \frac{O(H) \cdot O(K)}{O(H \cap K)}$$

(d) Examine if the ring of matrices
$$\left\{ \begin{pmatrix} a & b \\ 2b & a \end{pmatrix} : a, b \in \mathbb{R} \right\}$$
 is a

22-23/13314

(Continued)

22-23/13314

- (h) If $G = \{-1, 0, 1\}$, then (G, +)
 - (i) Is a group
 - (ii) Is not a group
 - (iii) Is a semi-group
 - (iv) Is a monoid
 - (v) None of these
- (i) If $\vec{a}, \vec{b}, \vec{c}$ are three vectors, then value of $\vec{a} \times (\vec{b} \times \vec{c})$ is

(i) $(\vec{a} \cdot \vec{c}) \cdot \vec{b} - (\vec{a} \cdot \vec{b}) \cdot \vec{c}$ (ii) $(\vec{a} \cdot \vec{b}) \cdot \vec{c} - (\vec{a} \cdot \vec{c}) \cdot \vec{b}$ (iii) $(\vec{b} \cdot \vec{c}) \cdot \vec{a} - (\vec{c} \cdot \vec{a}) \cdot \vec{b}$ (iv) $(\vec{a} \cdot \vec{c}) \cdot \vec{b} - (\vec{b} \cdot \vec{c}) \cdot \vec{a}$

(v) None of these

(Turn Over)

- (j) $(\mathbb{Z}, +,.)$ is
 - (i) A field
 - (ii) Not a field
 - (iii)A commutative skew field
 - (iv) A non-commutative skew field
 - (v) None of these

Group – B

- **2.** Answer **any** *ten* question : $2 \times 10=20$
 - (a) Find by Descarte's rule of sign, the nature of the roots of the equation xⁿ = 1, n being a natural number.
 - (b) Solve the equation $x^3 7x^2 + 19x 13 = 0$, given that one of its roots is 3 + 2i.
 - (c) Find a complex number z for which $e^z = -i$.
 - (d) Solve $z^5 = 1$, where z is a complex number.
 - (e) Write the subset of the set $\{x, y, z\}$.
 - (f) State with reason whether the mapping $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x|x|, \forall x \in \mathbb{R}$ is injective, or not.
 - (g) Does the set {−2, −1,0,1,2} forms a group under usual addition? Justify your answer.

- (h) In a group (G, o), a is an element of order 30. Find the order of a¹⁸.
- (i) Express (5,2,1) as a linear combination of (1,4,0), (2,2,1) and (3,0,1).
- (j) Determine k, so that the vectors (1,3,1), (2,k,0) and (0,1,4) are linearly dependent.
- (k) Solve the equation $2x^3 x^2 18x + 9 = 0$, if two of the roots are equal in magnitude but opposite in sign.
- (l) Show that the vectors corresponding to the positions of the point (3, -2, 1) and (2, 3, 0) are at right angles.
- (m) Find the angle between planes

 $\vec{r}.(2\hat{i}+3\hat{j}+\hat{k})=7 \text{ and } \vec{r}.(3\hat{i}-2\hat{j}+5\hat{k})=5.$

- (n) Transfer the equation $3(12x - 5y + 39) + 2(5x + 12y - 26)^2 = 169.$
- (o) Find the equation of the conic passing through the point of interesection of the straight lines x 3y 4 = 0 and x + y = 0 and the intersection of the conics x²-3xy+y²-6x-4y+5=0 and 3x²+7xy-3y²-14x-2y+23=0.

22-23/13314